toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kuyucak, N. openurl 
  Title (up) Acid mine drainage; treatment options for mining effluents Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 2 Pages 12-15  
  Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5723 Serial 324  
Permanent link to this record
 

 
Author Kleinmann, R.L.P. openurl 
  Title (up) Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
  Year 1990 Publication Int. J. Mine Water Abbreviated Journal  
  Volume 9 Issue 1-4 Pages 269-276  
  Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum  
  Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-6960 ISBN Medium  
  Area Expedition Conference  
  Notes Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17368 Serial 328  
Permanent link to this record
 

 
Author Kuyucak, N. openurl 
  Title (up) Acid mining drainage prevention and control Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 1 Pages 12-15  
  Keywords acid mine drainage; bacteria; biodegradation; chemical properties; controls; disposal barriers; dissolved materials; geomembranes; heavy metals; hydrolysis; leaching; migration of elements; moisture; oxidation; permeability; pollution; ponds; preventive measures; reclamation; retention; risk assessment; sulfate ion; sulfides; synthetic materials; tailings; toxic materials; underground installations; underground storage; waste disposal; waste management; water pollution; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mining drainage prevention and control; 2001-050583; References: 21; illus. incl. 1 table United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5741 Serial 323  
Permanent link to this record
 

 
Author Bhole, A.G. url  openurl
  Title (up) Acid-Mine Drainage And Its Treatment Type Journal Article
  Year 1994 Publication Impact of Mining on the Environment Abbreviated Journal  
  Volume Issue Pages 131-141  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8945 Serial 146  
Permanent link to this record
 

 
Author Deshpande, V.P.; Pande, S.P.; Gadkari, S.K.; Saxena, K.L. openurl 
  Title (up) Acid-mine Drainage Treatment Type Journal Article
  Year 1991 Publication J. Environ. Sci. Health Part A-Environ. Sci. Eng. Toxic Hazard. Subst. Control Abbreviated Journal  
  Volume 26 Issue 8 Pages 1387-1408  
  Keywords mine water  
  Abstract One of the serious problem faced by the mining industry is the disposal of acid mine drainage in view of it's harmful effects on receiving water bodies.Studies were conducted at Churcha underground mines of Colleries of South Eastern Coal Fields (CoalIndia Ltd) on the acidic mine waters with a view to evolve effective treatment system. The results of treatability studies alongwith viable treatment options are discussed in the paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-1204 ISBN Medium  
  Area Expedition Conference  
  Notes Acid-mine Drainage Treatment; Isi:A1991gt63500005; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17330 Serial 403  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: