|   | 
Details
   web
Records
Author Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R.
Title (up) A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
Year 1999 Publication Resour. Conserv. Recycl. Abbreviated Journal
Volume 27 Issue 1-2 Pages 157-167
Keywords mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella
Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Medium
Area Expedition Conference
Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9937 Serial 26
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J.
Title (up) A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal
Volume 17 Issue 4 Pages 99-107
Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim
Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-3629 ISBN Medium
Area Expedition Conference
Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17555 Serial 67
Permanent link to this record
 

 
Author Macklin, M.G.
Title (up) A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
Year 2006 Publication Geomorphology Abbreviated Journal
Volume 79 Issue 3-4 Pages 423-447
Keywords mine water treatment
Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16934 Serial 105
Permanent link to this record
 

 
Author Davis, L.
Title (up) A handbook of constructed wetlands: a guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage, stormwater in the Mid-Atlantic Region Type Journal Article
Year 1994 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-16-052999-9 (*v. 1) 0-16-053000-8 (*v. 2) 0-16-053001-6 (*v. 3) 0-16-053002-4 (*v. 4) 0-16-053003- ISBN Medium
Area Expedition Conference
Notes A handbook of constructed wetlands: a guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage, stormwater in the Mid-Atlantic Region; Washington, DC: U.S. G.P.O., Supt. of Docs United States / Natural Resources Conservation Service; Opac Approved no
Call Number CBU @ c.wolke @ 16822 Serial 407
Permanent link to this record
 

 
Author Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W.
Title (up) A handbook of technologies for avoidance and remediation of acid mine drainage Type RPT
Year 1998 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage bioremediation coal mines constructed wetlands disposal barriers ion exchange mines pollution pumping recharge remediation reverse osmosis surface water technology waste disposal waste management water treatment wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Acid Drainage Technology Initiative, A. and R.W.G.U.S. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A handbook of technologies for avoidance and remediation of acid mine drainage; 2001-074240; GeoRef; English; References: 72; illus. incl. 5 tables West Virginia University, National Mine Land Reclamation Center, Morgantown, WV, United States Approved no
Call Number CBU @ c.wolke @ 16615 Serial 245
Permanent link to this record