toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Walitt, A.; Jasinski, R.; Keilin, B. openurl 
  Title (up) Silicate treatment of coal mine refuse piles Type Journal Article
  Year 1970 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; coal; economics; environmental geology; methods; mining; organic residues; pollution; prevention; sedimentary rocks; sodium silicate; solutions; treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-7068 ISBN Medium  
  Area Expedition Conference  
  Notes Silicate treatment of coal mine refuse piles; 1976-011512; United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6853 Serial 221  
Permanent link to this record
 

 
Author Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M. url  openurl
  Title (up) Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
  Year 1999 Publication Ecological Engineering Abbreviated Journal  
  Volume 12 Issue 3-4 Pages 353-372  
  Keywords mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management  
  Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.  
  Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10596 Serial 25  
Permanent link to this record
 

 
Author Beers, W.F.; Ciolkosz, E.J.; Kardos, L.T. openurl 
  Title (up) Soil as a medium for the renovation of acid mine drainage water Type Journal Article
  Year 1974 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; coal; environmental geology; methods; mining; organic residues; pollution; rivers and streams; sedimentary rocks; soils; treatment; water 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-7068 ISBN Medium  
  Area Expedition Conference  
  Notes Soil as a medium for the renovation of acid mine drainage water; 1976-012550; illus. United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6839 Serial 458  
Permanent link to this record
 

 
Author Norton, P.J. openurl 
  Title (up) The Control of Acid Mine Drainage with Wetlands Type Journal Article
  Year 1992 Publication Mine Water Env. Abbreviated Journal  
  Volume 11 Issue 3 Pages 27-34  
  Keywords acid mine drainage construction chemistry artificial wetlands pollution control performance evaluation coal mines pollution control and prevention  
  Abstract The recent increases in environmental legislation, especially in the USA'have meant that there is a need on behalf of the mining companies for more judicious operational planning and more thorough restoration techniques in order to reduce costs and prevent violation of the smctly enforced regulations. Water pollution is probably the greatest problem and many less enlightened operators, especially for example, in surface coal milling in Pennsylvania, have been forced into liquidation after having been unable to meet the severe restrictions on Acid Mine Drainage (AMD). The problems of AMD are also inherent in most forms of metalliferous and coal mining and also in some types of aggregate quarrying. As excavations go deeper in search of ever diminishing reserves then they are more likely to encounter groundwater which can become polluted if insufficient care is not taken. It is to be expected that the laws will also become more severe than they are at present in Europe and methods of treatment of AMD will need to be developed that are more efficient than the costly chemical methods currently used. Research by the author and others into the source of AMD pollution and its treatment with engineered wetlands and other operational methods are discussed in the paper. The methods have- the distinct benefit that they are cheap to install, are cost effective over a long period with the minimum of supervision and are environmentally acceptable to the planning and regulatory authorities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The Control of Acid Mine Drainage with Wetlands; 1; 1 Abb.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17401 Serial 284  
Permanent link to this record
 

 
Author Stewart, B.R. openurl 
  Title (up) The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6351 Serial 230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: