|   | 
Details
   web
Records
Author Bhole, A.G.
Title (up) Acid-Mine Drainage And Its Treatment Type Journal Article
Year 1994 Publication Impact of Mining on the Environment Abbreviated Journal
Volume Issue Pages 131-141
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8945 Serial 146
Permanent link to this record
 

 
Author Skousen, J.G.
Title (up) Acid-Mine Drainage Treatment Alternatives Type Journal Article
Year 1992 Publication Land Reclamation : Advances in Research & Technology Abbreviated Journal
Volume Issue Pages 297-303
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-Mine Drainage Treatment Alternatives; Isip:A1992by10s00035; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9016 Serial 147
Permanent link to this record
 

 
Author Jage, C.R.; Zipper, C.E.
Title (up) Acid-mine drainage treatment using successive alkalinity-producing systems Type RPT
Year 2000 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; alkalinity; Appalachians; carbonate rocks; decontamination; dissolved materials; dissolved oxygen; limestone; North America; oxygen; pH; pollution; reclamation; sedimentary rocks; United States; Virginia; waste management; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Virginia Polytechnic Institute and State University, P.R.P.B.V.A.U.S. Series Title Powell River Project research and education program reports Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-mine drainage treatment using successive alkalinity-producing systems; 2002-029549; GeoRef; English; References: 12; illus. incl. 2 tables U. S. Geological Survey, Library, Reston, VA, United States Approved no
Call Number CBU @ c.wolke @ 5882 Serial 343
Permanent link to this record
 

 
Author Coulton, R.H.; Williams, K.P.
Title (up) Active treatment of mine water; a European perspective Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume 24 Issue 1 Pages 23-26
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Active treatment of mine water; a European perspective; 2007-023995; illus. incl. 3 tables Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5412 Serial 20
Permanent link to this record
 

 
Author Ball, B.R.
Title (up) Advanced oxidation treatment of mine drainage Type Journal Article
Year 1996 Publication Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes – 1996 Abbreviated Journal
Volume Issue Pages 363-376
Keywords mine water treatment
Abstract An investigation of the effects of ozone and ozone-induced hydroxyl radical on reducing whole affluent toxicity is described and discussed relative to the application of ozone for industrial water treatment. Results from operation of an ozone system treating industrial affluent from a lead and zinc mine in Colorado are presented. The mine discharges 1,000 gpm of wastewater into a tributary of the Arkansas River and has historically exceeded Whole Effluent Toxicity (WET) limits and on occasion has exceeded numeric limits for copper, ammonia, and cyanide. Based on results of a Toxicity Identification Evaluation (TIE) conducted on the effluent and individual process waste streams, the source of effluent toxicity is believed to be primarily associated with organic reagents used in the milling process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Advanced oxidation treatment of mine drainage; Isip:000078691700031; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17173 Serial 180
Permanent link to this record