toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kepler, D.A.; Mc Cleary, E.C. url  openurl
  Title (up) Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type Journal Article
  Year 1994 Publication Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal  
  Volume 1 Issue Pages 195-204  
  Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS  
  Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9722 Serial 55  
Permanent link to this record
 

 
Author Ahmed, S.M. openurl 
  Title (up) Surface chemical methods of forming hardpan in pyrrhotite tailings and prevention of the acid mine drainage Type Journal Article
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; chemical composition; experimental studies; mines; oxidation; pollution; pyrite; pyrrhotite; remediation; sulfides; tailings; waste disposal; weathering rinds 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Special Publication - United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2007-045205; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 4; illus. incl. 1 table; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6593 Serial 488  
Permanent link to this record
 

 
Author Peterson, D.E.; Kindley, M.J. openurl 
  Title (up) The Golden Cross Mine water management system Type Journal Article
  Year 1994 Publication New Zealand Mining Abbreviated Journal  
  Volume 14 Issue Pages 15-21  
  Keywords Australasia Coromandel Peninsula cyanides gold ores Golden Cross Mine metal ores mines New Zealand North Island tailings Waihi New Zealand waste water water management water treatment 30, Engineering geology  
  Abstract Because of its location in the sensitive Coromandel Peninsula, strict water management and environmental requirements had to be met on the Golden Cross Mine Project. This led to the development of new technologies for cyanide recovery and the adoption of advanced water management and water treatment systems. This paper discusses the water management and treatment system adopted for contaminated water at Golden Cross. While permit discharge levels must be and are met for mine discharge waters, the ultimate success of the water management system is demonstrated by the results downstream; biological surveys show no changes to the resident aquatic life in the river.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1170-4209 ISBN Medium  
  Area Expedition Conference  
  Notes The Golden Cross Mine water management system; 1998-055867; New Zealand (NZL); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16732 Serial 271  
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M. openurl 
  Title (up) The roles of spent mushroom substrate for the mitigation of coal mine drainage Type Journal Article
  Year 1994 Publication Compost Science and Utilization Abbreviated Journal  
  Volume 2 Issue 4 Pages 84-94  
  Keywords acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology  
  Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17639 Serial 233  
Permanent link to this record
 

 
Author Ericsson, B.; Hallmans, B. url  openurl
  Title (up) Treatment and Disposal of Saline Waste-water from Coal-mines in Poland Type Journal Article
  Year 1994 Publication Desalination Abbreviated Journal  
  Volume 98 Issue 1-3 Pages 239-248  
  Keywords mine water  
  Abstract Some Polish coal mines are reviewed with respect to the disposal of saline wastewater into rivers and its environmental impact. The drainage water from mines has a daily contribution of, in the order of magnitude, 6,500 tons chlorides (Cl-) and 0.5 tons sulphates (SO42-) to the rivers Wisla and Odra. The river Wisla contributes to about 55 % of the water resources in Poland. This report is based on a part of a commission for the Ministry of Environmental Protection, National Resources and Forestry ofPoland by COWI-VBB VIAK joint venture.Different treatment and disposal schemes are described and compared from a technical-economical point of view, out of which methods for desalination with zero discharge as well as deep well injection are the most promising ones.The desalination methods include reverse osmosis (RO) plant, thermal powered desalination and crystallization plant as well as facilities for dewatering and drying of sodium chloride (NaCl) to be sold in Poland and/or on the export market, The valuable main products are potable water, boiler feed water and sodium chloride. A special problem in this connection may be the radioactivity in the wastewater from some of the mines. Special treatment methods for radioactivity removal in the selected treatment and disposal scheme for the mine wastewater are discussed with respect to the effects of radioactivity on the saleability of the recovered salt. In addition methods for recovery of the by-products magnesium hydroxide, iodine and bromine are considered from the point of view of economy and environmental protection.Finally, the desalination project in Katowice for the coal mines Debiensko and Budryk is now in the end of the construction phase. Some modifications of the original design ace shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment and Disposal of Saline Waste-water from Coal-mines in Poland; Isi:A1994pp05300022; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17337 Serial 52  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: