|   | 
Details
   web
Records
Author Kuyucak, N.
Title (down) Acid mine drainage prevention and control options Type Journal Article
Year 2002 Publication CIM Bull. Abbreviated Journal
Volume 95 Issue 1060 Pages 96-102
Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management
Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.
Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17532 Serial 64
Permanent link to this record
 

 
Author Wildeman, T.R.; Bednar, A.J.; Gusek, J.J.; Pinto, A.
Title (down) A review of the passive treatment of arsenic Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; arsenic; case studies; chemical properties; drainage; experimental studies; laboratory studies; metals; mines; Nevada; passive treatment; pollution; tailings; toxic materials; United States; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A review of the passive treatment of arsenic Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046184; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5627 Serial 210
Permanent link to this record
 

 
Author Gobla, M.J.
Title (down) A rapid response to cleanup – Gilt Edge Superfund Site, South Dakota Type Journal Article
Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal
Volume Issue Pages 421-425
Keywords mine water treatment
Abstract The Gilt Edge gold mine is an acid drainage site that has been put on an accelerated closure schedule. The mine ceased activities in 1999 when Dakota Mining Corporation declared bankruptcy forcing the State of South Dakota to immediatly assume water treatment operations. Evaluation of conceptual closure plan options and cost estimates led the State of South Dakota to a decision to seek Federal assistance. The site has quickly moved into reclamation mode for the principal contamination source, the Ruby waste-rock dump. Designs and specifications for capping the Ruby waste-rock dump were prepared while Superfund listing was pursued. In October of 2000, mobilization of the first reclamation contractor began and by December the site was added to the National Priorities List. Capping the waste-rock dump will address a major acid drainage source. Water treatment requirements are expected to decline as conventional methods such as diverting clean water, backfilling, grading, capping, limestone neutralization, and revegetation are implemented. Acid seepage from underground workings, steep highwalls, and some pit backfills will remain. Major field trials of emerging technologies are nearing completion and some are showing promising results. Carbon reduction in a pit lake, and pyrite microencapsulation on simulated waste dumps, are showing initial success. Their application may minimize or eliminate the need for long-term active water treatment which has been a long sought goal for major acid rock drainage sites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A rapid response to cleanup – Gilt Edge Superfund Site, South Dakota; Isip:000175560600055; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17038 Serial 160
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S.
Title (down) Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages 464 pp
Keywords mine water hydrology
Abstract Nowhere is the conflict between economic progress and environmental quality more apparent than in the mineral extraction industries. The latter half of the 20th century saw major advances in the reclamation technologies. However, mine water pollution problems have not been addressed. In many cases, polluted mine water long outlives the life of the mining operation. As the true cost of long-term water treatment responsibilities has become apparent, interest has grown in the technologies that would decrease the production of contaminated water and make its treatment less costly. This is the first book to address the mine water issue head-on. The authors explain the complexities of mine water pollution by reviewing the hydrogeological context of its formation, and provide an up-to-date presentation of prevention and treatment technologies. The book will be a valuable reference for all professionals who encounter polluted mine water on a regular or occasional basis. Foreword; R. Fernández Rubio. Preface. 1. Mining and the Water Environment. 2. Mine Water Chemistry. 3. Mine Water Hydrology. 4. Active Treatment of Polluted Mine Waters. 5. Passive Treatment of Polluted Mine Waters
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication Dordrecht Editor
Language Summary Language Original Title
Series Editor Series Title Mine Water – Hydrology, Pollution, Remediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1-4020-0137-1 Medium
Area Expedition Conference
Notes Mine Water – Hydrology, Pollution, Remediation; 1; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17449 Serial 195
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S.
Title (down) Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acidification active treatment aquifer vulnerability aquifers bioremediation chemical composition critical load decision-making discharge engineering properties geomembranes ground water impact statements karst hydrology microorganisms mine dewatering mines natural attenuation pollution regulations remediation risk assessment sedimentation sludge solute transport surface water tailings tailings ponds waste management water management water pollution water quality weathering wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Academic Publishers Place of Publication Dordrecht Editor Alloway, B.J.; Trevors, J.T.
Language Summary Language Original Title
Series Editor Series Title Mine water; hydrology, pollution, remediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 140200138x; 1202001371 Medium
Area Expedition Conference
Notes Mine water; hydrology, pollution, remediation; 2003-030514; GeoRef; English; Includes appendix References: 516; illus. Approved no
Call Number CBU @ c.wolke @ 16504 Serial 196
Permanent link to this record