|   | 
Details
   web
Records
Author Reisinger, R.W.; Gusek, J.
Title (up) Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 49-53
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine copper hydrogeology mine drainage United States Wyoming Ferris Haggarty Mine
Abstract An historic underground copper mine in Wyoming is discharging neutral but copper-laden water into a pristine creek. The EPA-deferred site qualifies for reclamation by the Wyoming Abandoned Mine Land (AML) program. The cleanup goal is to restore the discharge so that the creek can eventually support a trout fishery. Hydrological and geochemical investigations underground have suggested two sources of mine water: one clean and the other containing copper. Results of bench- and pilot-scale tests support the viability of using low-cost passive treatment techniques to reduce copper concentrations in the near-freezing mine discharge.
Address R.W. Reisinger, Knight Piesold LLC, Denver, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming; 0434643; United-States 5; Geobase Approved no
Call Number CBU @ c.wolke @ 17637 Serial 263
Permanent link to this record
 

 
Author Zinck, J.M.; Aube, B.C.
Title (up) Optimization of lime treatment processes Type Journal Article
Year 2000 Publication CIM Bull. Abbreviated Journal
Volume 93 Issue 1043 Pages 98-105
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage buffering lime Canada
Abstract Lime neutralization technology is widely used in Canada for the treatment of acid mine drainage and other acidic effluents. In many locations, improvements to the lime neutralization process are necessary to achieve a maximum level of sludge densification and stability. Conventional lime neutralization technology effectively removes dissolved metals to below regulated limits. However, the metal hydroxide and gypsum sludge generated is voluminous and often contains less than 5% solids. Despite recent improvements in the lime neutralization technology, each year, more than 6 700 000 m3 of sludge are generated by treatment facilities operated by the Canadian mining industry. Because lime neutralization is still seen as the best available approach for some sites, sludge production and stability are expected to remain as issues in the near future. Several treatment parameters significantly impact operating costs, effluent quality, sludge production and the geochemical stability of the sludge. Studies conducted both at CANMET and NTC have shown that through minor modifications to the treatment process, plant operators can experience a reduction in operating costs, volume of sludge generated, metal release to the environment and liability. This paper discusses how modifications in plant operation and design can reduce treatment costs and liability associated with lime treatment.
Address J.M. Zinck, CANMET, Mining and Mineral Sciences Lab., Natural Resources Canada, Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Optimization of lime treatment processes; 2291672; Canada 17; Geobase Approved no
Call Number CBU @ c.wolke @ 17537 Serial 183
Permanent link to this record
 

 
Author Miller, S.D.
Title (up) Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands Type Book Chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; controls; decontamination; environmental analysis; environmental effects; geochemistry; ground water; land management; lime; oxidation; pH; pollutants; pollution; preventive measures; risk assessment; soils; sulfides; surface water; waste disposal; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Lewis Publishers Place of Publication Boca Raton Editor Wong, M.H.; Wong, J.W.C.; Baker, A.J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 157504109x Medium
Area Expedition Conference
Notes Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands; GeoRef; English; 2000-057936 Approved no
Call Number CBU @ c.wolke @ 5951 Serial 298
Permanent link to this record
 

 
Author Wiseman, I.M.; Edwards, P.J.; Rutt, G.P.
Title (up) Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 221-230
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects Wetlands and estuaries geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) geographical abstracts: physical geography hydrology (71 6 8) coal mine recovery aquatic ecosystem constructed wetland water treatment mine drainage abandoned mine
Abstract Seven kilometres of the River Pelenna in South Wales were impacted for approximately 30 years by discharges from abandoned coal mines. Elevated iron and low pH caused significant ochreous staining and had detrimental effects on the river ecology. The River Pelenna Mine water project constructed a series of passive wetland treatment systems to treat these discharges. Monitoring of the performance and environmental benefits of these has been undertaken as part of an Environment Agency R&D project. This project has assessed the changes in water quality as well as monitoring populations of invertebrates, fish and birds between 1993 and 2001. Performance data from the wetlands show that on average the three systems are removing between 82 and 95% of the iron loading from the mine waters. In the rivers downstream, the dissolved iron concentration has dropped to below the Environmental Quality Standard (EQS) of 1 mg/L for the majority of the time. Increases in pH downstream of the discharges have also been demonstrated. Trout (Salmo trutta) recovered quickly following mine water treatment, returning the next year to areas that previously had no fish. Intermittent problems with overflows from the treatment systems temporarily depleted the numbers, but the latest data indicate a thriving population. The overflow problems and also background episodes of acidity have affected the recovery of the riverine invertebrates. However, there have been gradual improvements in the catchment, and in the summer of 2001 most sites held faunas which approached those found in unpolluted controls. Recovery of the invertebrate fauna is reflected in marked increases in the breeding success of riverine birds between 1996 and 2001. This study has shown that constructed wetlands can be an effective, low cost and sustainable solution to ecological damage caused by abandoned mine drainage.
Address I.M. Wiseman, Environment Agency Wales, 19 Penyfai Lane, Furnace, Llanelli SA15 4EL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands; 2530429; United-Kingdom 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17516 Serial 206
Permanent link to this record
 

 
Author Dunn, J.; Russell, C.; Morrissey, A.
Title (up) Remediating historic mine sites in Colorado Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 32-35
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage environmental effect remediation United States Colorado
Abstract This article provides examples of reclamation and remediation in Colorado watersheds. The projects were undertaken by the US Environmental Protection Agency (EPA) Region 8, in cooperation with the Colorado Division of Minerals and Geology (CDMG), Colorado Department of Public Health and Environment (CDPHE), US Forest Service (USFS), the Bureau of Land Management (BLM), Bureau of Reclamation (BOR) and the US Geological Survey (USGS). These agencies collaborated on the environmental problems at abandoned mines. These samples involved the interaction of surface and ground waters with sulfide-bearing rocks, mine workings and surface mine spoils that produce acid solutions charged with heavy metals that are toxic to organisms. In these examples, acid mine drainage from historic mines in Colorado has been approached cooperatively with stakeholders. Each example emphasizes one aspect of the three-stage process. These stages include characterization and prioritization, hydrologic controls and the evaluation of long-term remediation activities.
Address J. Dunn, US Environmental Protection Agency, Region 8, 999 18(th) St., Suite 500, Denver, CO 80202-2466, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Remediating historic mine sites in Colorado; 0434641; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17547 Serial 398
Permanent link to this record