toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Waring, C.L.; Taylor, J.R. openurl 
  Title (up) Type Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 663-665  
  Keywords in-situ mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A new technique for building in-situ sub-surface hydrologic barriers: NBT; 1; AMD ISI | Wolkersdorfer; 3 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9947 Serial 218  
Permanent link to this record
 

 
Author Limited, S.C. openurl 
  Title (up) Type Book Whole
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages 179 pp  
  Keywords AMD acid mine drainage mine water treatment active treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Mine Environment Neutral Drainage [MEND] Program Place of Publication 3.32.1 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title MEND Report Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid Mine Drainage – Status of Chemical Treatment and Sludge Management Practices; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden Approved no  
  Call Number CBU @ c.wolke @ 9890 Serial 315  
Permanent link to this record
 

 
Author Kuyucak, N.; Lindvall, M.; Rufo Serrano, J.A.; Oliva, A.F. openurl 
  Title (up) Type Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 473-479  
  Keywords HDS lime sludge mine water treatment  
  Abstract Lime neutralization is a frequently used method in the mining industry for the treatment of acid waters. These waters contain metal ions such as zinc, manganese, copper, cadmium, lead, etc. The conventional, straight lime neutralization technology generates a Low Density Sludge (LDS) having only 1-2% solids content. This creates sludge disposal difficulties, and results in the loss of potentially large quantities of recovered water, which in turn increases the demand for fresh water requirements for mining/milling activities. The High Density Sludge (HDS) process, on the other hand, is the state-of-the-art technology in North America. It generates a dense sludge with less volume and better particulate properties. Furthermore, the typical gelatinous nature of the sludge changes to a granulated, sand-like texture. Boliden Apirsa, S.L. investigated the feasibility of an HDS process to increase the treatment capacity of their existing plant, and resolve the issues associated with the LDS process for their Los Frailes project. The project required, given that the production of ore was going to be doubled, a significant increase in water was needed without altering the water reservoir sitting north of the concentrator. In addition, the final effluent quality was a priority issue. First, a pilot-scale study was undertaken in 1996, and parameters critical to the design and performance of the process were determined. The results showed that the HDS process could significantly improve the sludge characteristics by increasing the solids fraction from 1.5 to 12.0%, thereby decreasing the sludge volume to be disposed to the tailings ponds by a factor of 10. A full-scale, HDS lime neutralization treatment plant for an average flow rate of 1500 m3/hr was designed and was commissioned in early 1998 in collaboration with Colder Associates, Ottawa, Canada. So far, the full-scale treatment plant has been generating a sludge with more than 30% solids content, exceeding its target value of 12% solids. It produces excellent effluent quality, and scaling in the handling equipment is virtually eliminated. The sludge has dense, easily settable granular particles rather than fluffy flocs, yet has low viscosity that facilitates its unassisted gravity flow. The process has resulted in an increase in the treated water volume. The rate of lime consumption per unit volume of water treated also decreased. The process principles and the steps taken in process development will be discussed and the results obtained to date will be summarized in this communication.  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Implementation of a High Density Sludge “HDS” Treatment Process at the Boliden Apirsa Mine Site; 1; VORHANDEN | AMD ISI | Wolkersdorfer; FG als Datei vorhanden 4 Abb., 4 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9751 Serial 322  
Permanent link to this record
 

 
Author Gerth, A.; Kießig, G. isbn  openurl
  Title (up) Type Book Whole
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages 173-180  
  Keywords mining uranium mining passive treatment Saxony mine water treatment  
  Abstract Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_  
  Address  
  Corporate Author Thesis  
  Publisher Battelle Press Place of Publication (6)5 Editor Leeson, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Phytoremediation, wetlands and sediments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-57477-115-9 Medium  
  Area Expedition Conference  
  Notes Passive/Biological Treatment of Waters contaminated by Uranium Mining; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 4 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17345 Serial 372  
Permanent link to this record
 

 
Author Ettner, D.C. isbn  openurl
  Title (up) Type Book Whole
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages 187-191  
  Keywords Passiv Mine Water Treatment alternative remediation technologies Kongens Mine Roros Folldal Mines Titania's tailings impoundment Storgangen Mine  
  Abstract Previous mining history in Norway has resulted in ongoing release of acid mine drainage. Preservation of the historical sites in mining areas does not allow for remediation technologies that result in significant alteration of the historical landscape. Therefore, alternative remediation techniques such as passive mine water treatment have been tested. The climate in Norway varies from mild coastal climates to artic climates, and one of the challenges with passive treatment systems is the cold winter conditions. Anaerobic treatment systems have been built at Kongens Mine near Røros, at Folldal mines, and at Titania's tailings impoundment near Storgangen Mine. These systems utilize sulfate-reducing bacteria that result in the precipitation of metal sulfides. A full- and pilot-scale system at Kongens Mine and Folldal were built in 2006 to remove copper and zinc from typical ARD in an alpine climate. Previous testing with pilot scale systems at Kongens Mine showed that up to 85% copper and 48% zinc could be removed. At Titania A/S the anaerobic system is designed to remove nickel from neutral waters. At this system over 90% nickel is removed when water flow is regulated at a constant flow. Testing shows that the system can function in cold winter conditions, however, optimal metal removal is achieved under warmer temperatures. Temperatures changes by global climatic warming will not adversely affect these anaerobic systems. However, extreme precipitation events and the resulting rapid fluctuations of ARD runoff will provide a challenge for the effectiveness of these systems.  
  Address  
  Corporate Author Thesis  
  Publisher Mako Edizioni Place of Publication Cagliari Editor Cidu, R.; Frau, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Water in Mining Environments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-88-902955-0-8 Medium  
  Area Expedition Conference  
  Notes Passive Mine Water Treatment in Norway; 1; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 3 Abb., 2 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17338 Serial 387  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: