|   | 
Details
   web
Records
Author Stewart, B.R.
Title The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology
Abstract
Address
Corporate Author Thesis (down) Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6351 Serial 230
Permanent link to this record
 

 
Author Hart, W.M.
Title Prediction and amelioration of acid mine drainage Type Book Whole
Year 1992 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; leaching; North Carolina; oxidation; pH; phosphate ion; porosimetry; prediction; remediation; SEM data; United States; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis (down) Ph.D. thesis
Publisher West Virginia University, Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Prediction and amelioration of acid mine drainage; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6723 Serial 360
Permanent link to this record
 

 
Author Diz, H.R.
Title Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity Type Book Whole
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; copper; effluents; ferrous iron; heavy metals; iron; manganese; metals; nickel; oxidation; pH; pollution; precipitation; rates; tailings; temperature; waste water; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis (down) Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6316 Serial 400
Permanent link to this record
 

 
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis (down) Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record
 

 
Author Arango, I.
Title Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage atmospheric precipitation benthic taxa bioremediation dissolved materials dissolved oxygen electron microscopy data Euglena mutabilis Green Valley Mine ICP mass spectra Indiana iron mass spectra metals microorganisms mines oxygen pH photochemistry photosynthesis pollution rain remediation sediments soils spectra temperature United States Vigo County Indiana water 22, Environmental geology
Abstract Euglena mutabilis is an acidophilic, photosynthetic protozoan that forms benthic mats in acid mine drainage (AMD) channels. At the Green Valley mine, western Indiana, E. mutabilis resides in AMD measuring <4.2 pH, with high concentrations of dissolved constituents (up to 22.67 g/l). One of the main factors influencing E. mutabilis distribution is water temperature. The microbe forms thick (>1 mm), extensive mats during spring and fall, when water temperature is between 13 and 28 degrees C. During winter and summer, when temperatures are outside this range, benthic communities have a very patchy distribution and are restricted to areas protected from extreme temperature changes. E. mutabilis also responds to rapid increases in pH, which are associated with rainfall events. During these events pH can increase above 4.0, causing precipitation of Fe and Al oxy-hydroxides that cover the mats. The microbe responds by moving through the precipitates, due to phototaxis, and reestablishing the community at the sediment-water interface within 12 hours. The biological activities of E. mutabilis may have a beneficial effect on AMD systems by removing iron from effluent via oxygenic photosynthesis, and/or by internal sequestration. Photosynthesis by E. mutabilis contributes elevated concentrations of dissolved oxygen (DO), up to 17.25 mg/l in the field and up to 11.83 mg/l in the laboratory, driving oxidation and precipitation of reduced metal species, especially Fe (II), which are dissolved in the effluent. In addition, preliminary electro-microscopic and staining analyses of the reddish intracellular granules in E. mutabilis indicate that the granules contain iron, suggesting that E. mutabilis sequesters iron from AMD. Inductive coupled plasma analysis of iron concentration in AMD with and without E. mutabilis also shows that E. mutabilis accelerates the rate of Fe removal from the media. Whether iron removal is accelerated by internal sequestration of iron and/or by precipitation via oxygenic photosynthesis has yet to be determined. These biological activities may play an important role in the natural remediation of AMD systems.
Address
Corporate Author Thesis (down) Ph.D. thesis
Publisher Indiana State University, Place of Publication Terre Haute Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems; GeoRef; English; References: 39; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16491 Serial 476
Permanent link to this record