|   | 
Details
   web
Records
Author Sottnik, P.; Sucha, V.
Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
Year 2001 Publication Mineralia Slovaca Abbreviated Journal
Volume 33 Issue 1 Pages 53-60
Keywords acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology
Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0369-2086 ISBN Medium
Area Expedition Conference
Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no
Call Number CBU @ c.wolke @ 16534 Serial 235
Permanent link to this record
 

 
Author Robinson, J.D.F.
Title Wetland treatment of coal-mine drainage Type Journal Article
Year 1998 Publication Coal International Abbreviated Journal
Volume 246 Issue 3 Pages 114-115
Keywords coal mines; Europe; mine drainage; mines; pH; pollution; UK Coal Authority; United Kingdom; water; water treatment; Western Europe; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-6941 ISBN Medium
Area Expedition Conference
Notes Wetland treatment of coal-mine drainage; 2000-013457; References: 1; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6129 Serial 260
Permanent link to this record
 

 
Author Mustikkamaki, U.-P.
Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal
Volume 58 Issue 1 Pages 44-47
Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology
Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-9317 ISBN Medium
Area Expedition Conference
Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no
Call Number CBU @ c.wolke @ 16560 Serial 291
Permanent link to this record
 

 
Author Marquardt, K.
Title Muelldeponie-Sickerabwasseraufbereitung unter Anwendung der Membrantechnik. Waste disposal-seepage waters processing by use of the membrane technique Zeitgemaesse Deponietechnik Type Book Chapter
Year 1987 Publication Stuttgarter Berichte zur Abfallwirtschaft, vol.24 Abbreviated Journal
Volume Issue Pages 187-234
Keywords case studies Central Europe Europe feasibility studies filters Germany methods mine drainage osmosis pollution volatilization water pollution 21, Hydrogeology
Abstract Seepage waters from waste disposal sites are highly polluted waste waters. Waste water treatment methods such as flocculation, sedimentation, or biological treatment being usual up to now are no longer adequate to purify these waters. That is why this article investigates modern techniques such as ultra-filtration, reverse osmosis, vaporization, stripping. The following combination has proved to be effective: membrane method (two-stage reverse osmosis with tubular and package modul) for pre- and reprocessing, vaporization for solidifying the solvents, stripping in order to extract volatile matter. Methodology, usability and results are introduced and illustrated here in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Muelldeponie-Sickerabwasseraufbereitung unter Anwendung der Membrantechnik. Waste disposal-seepage waters processing by use of the membrane technique Zeitgemaesse Deponietechnik; GeoRef In Process; German; 2815-10; Vertieferseminar “Zeitgemaesse Deponietechnik” an der Universitaet Stuttgart, Stuttgart, Federal Republic of Germany, Mar. 25-26, 1987 References: 34; tables, charts, sketch maps Approved no
Call Number CBU @ c.wolke @ 16766 Serial 309
Permanent link to this record
 

 
Author Magdziorz, A.; Sewerynski, J.
Title The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation Type Book Chapter
Year 2000 Publication 7th international Mine Water Association congress; Mine water and the environment Abbreviated Journal
Volume Issue Pages 430-442
Keywords abandoned mines; Central Europe; coal mines; drinking water; environmental analysis; Europe; ground water; Katowice Poland; mine drainage; mines; Pokoj mining district; Poland; remediation; Upper Silesian coal basin; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Uniwersytet Slaski Place of Publication Sosnowiec Editor Rozkowski, A.
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 8387431230 Medium
Area Expedition Conference
Notes The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation; GeoRef; English; 2002-018165; 7th international Mine Water Association congress; Mine water and the environment, Katowice-Ustron, Poland, Sept. 11-15, 2000 References: 4; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 5849 Serial 311
Permanent link to this record