|   | 
Details
   web
Records
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type Journal Article
Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Overview of acid mine drainage at-source control strategies Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; backfill; coal mines; disposal barriers; geochemistry; ground water; hydrochemistry; hydrology; leaching; legislation; mines; mitigation; Pennsylvania; pollution; prediction; reclamation; remediation; simulation; SMCRA; soils; Surface Mine Control and Reclamation Act; surface water; topsoil; toxicity; United States; waste disposal; waste rock; water quality; weathering 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Overview of acid mine drainage at-source control strategies; GeoRef; English; 2004-051145; Edition: 2 References: 44 Approved no
Call Number CBU @ c.wolke @ 6355 Serial 186
Permanent link to this record
 

 
Author Zamzow, M.J.; Schultze, L.E.
Title Treatment of acid mine drainage using natural zeolites Type Journal Article
Year 1993 Publication International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Abbreviated Journal
Volume 1993 Issue Pages 220-221
Keywords abandoned mines; acid mine drainage; clinoptilolite; experimental studies; feasibility studies; framework silicates; hydrochemistry; mines; Nevada; northeastern Nevada; phillipsite; remediation; Rio Tinto Deposit; silicates; surface water; United States; zeolite group abandoned mines acid mine drainage clinoptilolite experimental studies feasibility studies framework silicates hydrochemistry mines Nevada northeastern Nevada phillipsite remediation Rio Tinto Deposit silicates surface water United States zeolite group
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage using natural zeolites; GeoRef: 95-04036 1 table; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9998 Serial 192
Permanent link to this record
 

 
Author Smit, J.P.
Title Type Book Whole
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 467-471
Keywords experimental studies; ground water; laboratory studies; methods; mine drainage; pollutants; pollution; remediation hydrogeology mining water treatment contamination sulphate economy ettringite acid mine drainage plants agriculture laboratory hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language (down) Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Treatment of polluted Mine Water; 1; AMD ISI | Wolkersdorfer; FG 'de' 5 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 9909 Serial 241
Permanent link to this record