|   | 
Details
   web
Records
Author Sottnik, P.; Sucha, V.
Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
Year 2001 Publication Mineralia Slovaca Abbreviated Journal
Volume 33 Issue 1 Pages 53-60
Keywords acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology
Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0369-2086 ISBN Medium
Area Expedition Conference
Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no
Call Number CBU @ c.wolke @ 16534 Serial 235
Permanent link to this record
 

 
Author Parker, G.; Noller, B.; Waite, T.D.
Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology
Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16594 Serial 273
Permanent link to this record
 

 
Author Evangelou, V.P.
Title Potential microencapsulation of pyrite by artificial inducement of FePO (sub 4) coatings Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 96-103
Keywords acid mine drainage chemical reactions leaching oxidation pollutants pollution pyrite remediation sulfides tailings theoretical studies waste disposal weathering rinds 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Potential microencapsulation of pyrite by artificial inducement of FePO (sub 4) coatings; GeoRef; English; 2007-045209; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 11; illus. Approved no
Call Number CBU @ c.wolke @ 16711 Serial 386
Permanent link to this record
 

 
Author Dill, S.; Cowan, J.; Wood, A.; Bowell, R.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 329-342
Keywords hydrogeology mining water sulfate oxidation pyrite corrosion economy membrane processes precipitation processes treatment
Abstract
Address
Corporate Author Thesis
Publisher Proceedings International Mine Water Association Symposium Place of Publication 2 Editor Nel Petrus Johannes, L.
Language Summary Language Original Title
Series Editor Series Title Mine Water and Environmental Impacts Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN 062-02294-0-3 Medium
Area Expedition Conference
Notes A Review of Sulfate Removal Options from Mine Waters; 1; AMD ISI | Wolkersdorfer; FG 'de' Approved no
Call Number CBU @ c.wolke @ 9596 Serial 402
Permanent link to this record
 

 
Author Bolzicco, J.; Carrera, J.; Ayora, C.
Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type Journal Article
Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal
Volume 4 Issue Pages 27-34
Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology
Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no
Call Number CBU @ c.wolke @ 16471 Serial 443
Permanent link to this record