|   | 
Details
   web
Records
Author McConchie, D.M.; Clark, M.; Hanahan, C.; Baun, R.
Title New treatments for the old problems of acid mine drainage and sulphidic mine tailings storage Type Journal Article
Year 2000 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; ash; carbonate rocks; clastic sediments; construction materials; crushed stone; hydroxides; iron hydroxides; iron oxides; mines; mud; oxides; pH; pollution; reclamation; red mud; remediation; sea water; sedimentary rocks; sediments; storage; sulfides; tailings; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Programme & Abstracts - International Symposium on Environmental Geochemistry (ISEG), vol.5 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 5th international symposium on Environmental geochemistry; conference abstracts and scientific programme Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2006-033067; 5th international symposium on Environmental geochemistry, Cape Town, South Africa, April 2004; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5858 Serial 304
Permanent link to this record
 

 
Author Lin, C.; Lu, W.; Wu, Y.
Title Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination Type Journal Article
Year 2005 Publication Australian Journal of Soil Research Abbreviated Journal
Volume 43 Issue 7 Pages 819-826
Keywords Contamination and remediation Irrigated agriculture Soil studies geographical abstracts: physical geography soils (71 5 14) international development abstracts: agriculture and rural development (74 1 8) ecological abstracts: terrestrial ecology (73 4 2) bioaccumulation irrigation agricultural soil acid mine drainage pH crop plant heavy metal China Far East Asia Eurasia
Abstract Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.
Address C. Lin, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China cxlin@scau.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0004-9573 ISBN Medium
Area Expedition Conference
Notes Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination; 2828050; Australia 29; Geobase Approved no
Call Number CBU @ c.wolke @ 17496 Serial 314
Permanent link to this record
 

 
Author Kuyucak, N.
Title Acid mine drainage; treatment options for mining effluents Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 12-15
Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5723 Serial 324
Permanent link to this record
 

 
Author Kuyucak, N.
Title Type Book Whole
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 599-606
Keywords hydrogeology mining water acid mine drainage environment treatment control economy oxidation sulphide hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage Prevention and Control Options; 1; AMD ISI | Wolkersdorfer; FG 'de' 6 Abb., 1 Tab. Approved no
Call Number CBU @ c.wolke @ 17373 Serial 325
Permanent link to this record
 

 
Author Kleinmann, R.L.P.
Title Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
Year 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages 269-276
Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum
Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0255-6960 ISBN Medium
Area Expedition Conference
Notes Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17368 Serial 328
Permanent link to this record