|   | 
Details
   web
Records
Author Robbins, E.I.; Cravotta, C.A.; Savela, C.E.; Nord, G.L.
Title Hydrobiogeochemical Interactions in 'anoxic' Limestone Drains for Neutralization of Acidic Mine Drainage Type Journal Article
Year 1999 Publication Fuel Abbreviated Journal
Volume 78 Issue 2 Pages 259-270
Keywords aluminite biofilms epilithic bacteria gibbsite limestone armoring anoxic limestone drains acid mine drainage surface waters iron aluminum bacteria sulfate
Abstract Processes affecting neutralization of acidic coal mine drainage were evaluated within 'anoxic' limestone drains (ALDs). Influents had pH less than or equal to 3.5 and dissolved oxygen < 2 mg/l. Even though effluents were near neutral (pH > 6 and alkalinity > acidity), two of the four ALDs were failing due to clogging. Mineral-saturation indices indicated the potential for dissolution of calcite and gypsum, and precipitation of Al3+ and Fe3+ compounds. Cleavage mounts of calcite and gypsum that were suspended within the ALDs and later examined microscopically showed dissolution features despite coatings by numerous bacteria, biofilms, and Fe-Al-Si precipitates. In the drain exhibiting the greatest flow reduction, Al-hydroxysulfates had accumulated onlimestone surfaces and calcite etch points, thus causing the decline in transmissivity and dissolution. Therefore, where Al loadings are high and flow rates are low, a pre-treatment step is indicated to promote Al removal before diverting acidic mine water into alkalinity-producing materials. Published by Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0016-2361 ISBN Medium
Area Expedition Conference
Notes Hydrobiogeochemical Interactions in 'anoxic' Limestone Drains for Neutralization of Acidic Mine Drainage; Isi:000078042100020; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17411 Serial 261
Permanent link to this record
 

 
Author Parker, G.; Noller, B.; Waite, T.D.
Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology
Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16594 Serial 273
Permanent link to this record
 

 
Author Palmer, J.P.
Title Reclamation and Decontamination of Metalliferous Mining Tailings Type Journal Article
Year 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages 223-235
Keywords Britain tailings metals land reclamation environmental damage ground water surface water Wales treatment options
Abstract Parts of Britain have large accumulations of metalliferous tailings derived from mining in the lath, 19th and 20th centuries. These tailings were never subject to land reclamation schemes at the time of mining and are situated very close to water courses. They cause considerable environmental damage in terms of contamination of soils, dust blow and pollution of water courses and groundwater. In some parts of the country mine drainage is a major part of river pollution. In recent years, particularly in Wales, efforts have been made to “clean up” these sites. This has involved using techniques to isolate and contain the spoil, diversion of water courses, and the installation of water treatment facilities and drainage and the establishment of a vegetation cover. Research is also being initiated to investigate ways of decontaminating these metalliferous spoils as an alternative to using covering systems to reclaim them.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0255-6960 ISBN Medium
Area Expedition Conference
Notes Reclamation and Decontamination of Metalliferous Mining Tailings; 1; FG 2 Abb., 3 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17405 Serial 274
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L.
Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal
Volume Issue Pages 579-584
Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology
Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 16526 Serial 290
Permanent link to this record
 

 
Author Miller, S.D.
Title Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands Type Book Chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; controls; decontamination; environmental analysis; environmental effects; geochemistry; ground water; land management; lime; oxidation; pH; pollutants; pollution; preventive measures; risk assessment; soils; sulfides; surface water; waste disposal; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Lewis Publishers Place of Publication Boca Raton Editor Wong, M.H.; Wong, J.W.C.; Baker, A.J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN 157504109x Medium
Area Expedition Conference
Notes Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands; GeoRef; English; 2000-057936 Approved no
Call Number CBU @ c.wolke @ 5951 Serial 298
Permanent link to this record