toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ye, Z.H. url  openurl
  Title Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002 Type Journal Article
  Year 2004 Publication Wetlands Ecosystems in Asia: Function and Management Abbreviated Journal  
  Volume 1 Issue Pages 413-434  
  Keywords mine water treatment  
  Abstract A constructed wetland system in Guangdong Province, South of China has been used for treating Pb/Zn mine discharge since 1984. In this chapter, the performance of this system in the purification of mine discharge, metal accumulation in different ecological compartments and ecological succession within the system during the period of 1984-2002 has been reviewed. The data show that the wetland system not only effectively remove metals (mainly Pb, Zn, Cd and Cu) and total suspended solids from the mine discharge over a long period leading to significant improvement in water quality, but also gradually increase diversity and abundance of living organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002; Isip:000226088800023; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16997 Serial (down) 155  
Permanent link to this record
 

 
Author Maniatis, T. url  openurl
  Title Biological removal of arsenic from tailings pond water at Canadian mine Type Journal Article
  Year 2005 Publication Arsenic Metallurgy Abbreviated Journal  
  Volume Issue Pages 209-214  
  Keywords mine water treatment  
  Abstract Applied Biosciences has developed a biological technology for removal of arsenic, nitrate, selenium, and other metals from mining and industrial waste waters. The ABMet((R)) technology was implemented at a closed gold mine site in Canada for removing arsenic from tailings pond water. The system included six bioreactors that began treating water in the spring of 2004. Design criteria incorporated a maximum flow of 567 L/min (150 gallons per minute) and water temperatures ranging from 10 degrees C to 15 degrees C. Influent arsenic concentrations range from 0.5 mg/L to 1.5 mg/L. The ABMet((R)) technology consistently removes arsenic to below detection limits (0.02 mg/L). Data from the full scale system will be presented, as well as regulatory requirements and site specific challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological removal of arsenic from tailings pond water at Canadian mine; Isip:000228449400016; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16976 Serial (down) 154  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Tracer tests as a mean of remediation procedures in mines Type Journal Article
  Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal  
  Volume Issue Pages 817-822  
  Keywords mine water treatment  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7590 Serial (down) 153  
Permanent link to this record
 

 
Author Laspidou, C.S. url  openurl
  Title Constructed wetlands technology and water quality improvement: Recent advances Type Journal Article
  Year 2005 Publication Proceeding of the 9th International Conference on Environmental Science and Technology Vol B – Poster Presentations Abbreviated Journal  
  Volume Issue Pages B503-B508  
  Keywords mine water treatment  
  Abstract Today's demands for improved water quality in receiving waters are widespread and require the implementation of systems that are natural, low-cost and minimal-maintenance that could effectively treat polluted discharges. Wetlands are such systems and are recently receiving a lot of attention from scientists, ecologists and engineers, as they are deemed appropriate for reducing the impact of effluent and run-off on receiving waters. Since a large part of natural wetlands have been lost-about 53% of them in the United States from the 1780s to the 1980s-management options for improving receiving water quality, water reclamation and reuse involve the application of constructed wetlands technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands technology and water quality improvement: Recent advances; Isip:000237755500082; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16966 Serial (down) 152  
Permanent link to this record
 

 
Author Nakazawa, H. url  openurl
  Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
  Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal  
  Volume Issue Pages 373-381  
  Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production  
  Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-87339-642-1 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17456 Serial (down) 151  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: