toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bechard, G. url  openurl
  Title Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage Type Journal Article
  Year 1994 Publication Journal of Environmental Quality Abbreviated Journal  
  Volume 23 Issue 1 Pages 111-116  
  Keywords mine water treatment  
  Abstract A mixed aerobic-anaerobic microbial treatment process was developed previously for acid mine drainage (AMD) using straw as a substrate. The process was effective only if AMD was supplemented with sucrose. The present study was conducted to determine which, if any, of three cellulosic materials could sustain the microbial treatment of AMD without the addition of a sucrose amendment and to determine the effect of the retention time on the performance of the reactors. The performance of small reactors that treated simulated AMD in the continuous mode was evaluated using alfalfa (Medicago sativa L.) hay, timothy (Phleum pratense L.) hay, and straw with a 5 d retention time. Parameters measured were pH, Fe, Al, sulfate, and ammonium. Timothy hay and straw sustained AMD mitigation for 3 wk, and thereafter all activity ceased. After the reactors ceased treating AMD, the mitigative activities were reinitiated by the addition of sucrose, but not by urea. Alfalfa sustained AMD mitigation for a longer time period than either straw or timothy. The effect of three retention times, 3.5, 7, and 35 d, was then investigated for reactors containing fresh alfalfa. Increasing the retention time resulted in better metal removal and a greater pH increase. With a 7-d retention time, 75 L of simulated AMD were neutralized from a pH of 3.5 to a pH value greater than 6.5. Reactors operating with a 3.5-d retention time treated only 58.3 L of simulated AMD before failing. Ammonium was detected in effluents of active reactors. The results of this study indicate that a low maintenance microbial treatment system can be developed with alfalfa as a substrate without the addition of a sucrose amendment.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage; Wos:A1994mu33000017; Times Cited: 22; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17194 Serial 89  
Permanent link to this record
 

 
Author Bhole, A.G. url  openurl
  Title Acid-Mine Drainage And Its Treatment Type Journal Article
  Year 1994 Publication Impact of Mining on the Environment Abbreviated Journal  
  Volume Issue Pages 131-141  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8945 Serial 146  
Permanent link to this record
 

 
Author Swoboda-Colberg, N.; Colberg, P.; Smith, J.L. openurl 
  Title Constructed vertical flow aerated wetlands Type RPT
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; aeration; Butte Montana; carbonate rocks; case studies; clastic sediments; Clear Creek County Colorado; Colorado; construction; controls; fluid dynamics; gravel; heavy metals; Idaho Springs Colorado; limestone; Montana; pollution; rates; sedimentary rocks; sediments; Silver Bow County Montana; substrates; tailings; United States; waste water; water; water management; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor University of Wyoming, L.W.Y.U.S. performer Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed vertical flow aerated wetlands; 1998-003373; GeoRef; English; Final report. Grant DI-196561 National Technical Information Service, (703)605-6000, order number PB96-196811NEG, Springfield, VA, United States Approved no  
  Call Number CBU @ c.wolke @ 6506 Serial 226  
Permanent link to this record
 

 
Author Stefanoff, J.G.; Kim, Y.K. openurl 
  Title Reduction of leachability of heavy metals in acid mine drainage Type Journal Article
  Year 1994 Publication J. Environ. Sci. Health Part A Environ. Sci. Eng. Abbreviated Journal  
  Volume 29 Issue 2 Pages 371-388  
  Keywords 1 Geography  
  Abstract The leaching characteristics of sludges from the treatment of acid mine drainage(AMD) from Iron Mountain Mine near Redding, California were compared using two different processes: caustic soda treatment and a modified lime/sulfide treatment process. The modified lime/sulfide process produced a sludge with better dewaterability characteristics than sludge from the caustic soda process. The results of the Cal WET indicated that the modified lime/sulfide process sludge had less leachability than that of sludge from the caustic soda process. Both processes could achieve a substantial reduction of heavy metals in leachate to levels below the federal regulatory limits(TCLP). For cadmium and zinc, however, neither process produced a sludge that met the requirements of the Cal WET procedure.  
  Address CH2M HILL, 2525 Airpark Drive, Redding, CA 96001  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reduction of leachability of heavy metals in acid mine drainage; (1009849); 93x-00709; Using Smart Source Parsing; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17564 Serial 231  
Permanent link to this record
 

 
Author St-Arnaud, L.C. openurl 
  Title Water covers for the decommissioning of sulfidic mine tailings impoundments Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal  
  Volume Issue Pages 279-287  
  Keywords acid mine drainage; experimental studies; laboratory studies; leaching; metals; monitoring; pollution; remediation; seepage; sulfides; tailings; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Water covers for the decommissioning of sulfidic mine tailings impoundments; GeoRef; English; 2007-045181; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 13; illus. Approved no  
  Call Number CBU @ c.wolke @ 6586 Serial 232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: