|   | 
Details
   web
Records
Author Murdock, D.J.; Fox, J.R.W.; Bensley, J.G.
Title Treatment of acid mine drainage by the high density sludge process Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 241-249
Keywords acid mine drainage; concentration; oxidation; pollutants; pollution; remediation; solute transport; sulfides; waste water; water quality 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by the high density sludge process; GeoRef; English; 2007-045177; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 10; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6584 Serial 292
Permanent link to this record
 

 
Author Michaud, L.H.
Title Recent technology related to the treatment of acid drainage Type Journal Article
Year 1994 Publication Earth and Mineral Sciences Abbreviated Journal
Volume 63 Issue 3 Pages 53-55
Keywords acid mine drainage coal mine remediation passive treatment 3 Geology
Abstract The generation of acid mine drainage is a serious environmental problem associated with coal mining. The chemistry of acid mine drainage is outlined. The prevention and minimization of acid mine drainage formation is examined. The in situ inhibition and remediation of acid mine drainage is described. Methods for the passive treatment of acid mine drainage after formation are discussed. The design of treatment systems is considered. -P.M.Taylor
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recent technology related to the treatment of acid drainage; (1131431); 95k-15099; Using Smart Source Parsing 95. pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17562 Serial 300
Permanent link to this record
 

 
Author Lin, C.; Lu, W.; Wu, Y.
Title Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination Type Journal Article
Year 2005 Publication Australian Journal of Soil Research Abbreviated Journal
Volume 43 Issue 7 Pages 819-826
Keywords Contamination and remediation Irrigated agriculture Soil studies geographical abstracts: physical geography soils (71 5 14) international development abstracts: agriculture and rural development (74 1 8) ecological abstracts: terrestrial ecology (73 4 2) bioaccumulation irrigation agricultural soil acid mine drainage pH crop plant heavy metal China Far East Asia Eurasia
Abstract Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.
Address C. Lin, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China cxlin@scau.edu.cn
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-9573 ISBN Medium
Area Expedition Conference
Notes Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination; 2828050; Australia 29; Geobase Approved no
Call Number CBU @ c.wolke @ 17496 Serial 314
Permanent link to this record
 

 
Author Landers, J.
Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
Year 2006 Publication Civil Engineering Abbreviated Journal
Volume 76 Issue 7 Pages 30-31
Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America
Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7024 ISBN Medium
Area Expedition Conference
Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17490 Serial 318
Permanent link to this record
 

 
Author Kuyucak, N.; St-Germain, P.
Title Possible options for in situ treatment of acid mine drainage seepages Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 311-318
Keywords acid mine drainage; bacteria; base metals; biodegradation; bioremediation; carbonate rocks; experimental studies; in situ; limestone; metal ores; pollution; reduction; remediation; sedimentary rocks; seepage 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Possible options for in situ treatment of acid mine drainage seepages; GeoRef; English; 2007-045234; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 12; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6614 Serial 321
Permanent link to this record