|   | 
Details
   web
Records
Author St-Arnaud, L.C.
Title Water covers for the decommissioning of sulfidic mine tailings impoundments Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 279-287
Keywords acid mine drainage; experimental studies; laboratory studies; leaching; metals; monitoring; pollution; remediation; seepage; sulfides; tailings; waste disposal; water quality 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Water covers for the decommissioning of sulfidic mine tailings impoundments; GeoRef; English; 2007-045181; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 13; illus. Approved no
Call Number CBU @ c.wolke @ 6586 Serial 232
Permanent link to this record
 

 
Author Smit, J.P.
Title Potable water from sulphate polluted mine sources Type Journal Article
Year 2000 Publication Mining Environmental Management Abbreviated Journal
Volume 8 Issue 6 Pages 7-9
Keywords acid mine drainage; Africa; cost; drinking water; economics; pollutants; pollution; potability; remediation; South Africa; Southern Africa; sulfates; water quality; water resources 21 Hydrogeology; 22 Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Potable water from sulphate polluted mine sources; 2001-038331; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5799 Serial 239
Permanent link to this record
 

 
Author Rees, B.; Bowell, R.; Dey, M.; Williams, K.
Title Passive treatment; a walk away solution? Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 7-8
Keywords acid mine drainage; acidification; alkalinity; bacteria; bioremediation; buffers; chemical reactions; cost; effluents; ferric iron; ferrous iron; filtration; ground water; hydrolysis; iron; metals; monitoring; oxidation; permeability; pH; pollution; remediation; substrates; sulfate ion; suspended materials; water management; water pollution; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Passive treatment; a walk away solution?; 2001-050826; References: 3; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5722 Serial 265
Permanent link to this record
 

 
Author Rabenhorst, M.C.; James, B.R.
Title Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report Type RPT
Year 1993 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; anaerobic environment; Appalachians; concentration; decontamination; ferric iron; iron; manganese; marshes; Maryland; metals; mires; North America; oxidation; pollutants; pollution; pore water; remediation; sulfidization; transport; United States; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor University of Maryland, W.R.R.C.C.P.M.D.U.S. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report; 1998-034327; GeoRef; English; illus. incl. 1 table University of Maryland, Water Resources Research Center, College Park, MD, United States Approved no
Call Number CBU @ c.wolke @ 6684 Serial 267
Permanent link to this record
 

 
Author Parker, G.; Noller, B.; Waite, T.D.
Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology
Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16594 Serial 273
Permanent link to this record