|   | 
Details
   web
Records
Author Tabak, H.H.; Govind, R.
Title Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts Type Book Chapter
Year 2004 Publication Soil & Sediment Contamination Abbreviated Journal
Volume Issue Pages 171-172
Keywords acid mine drainage; acid rock drainage; acidification; bacteria; biodegradation; bioreactors; bioremediation; decontamination; effluents; geomembranes; heavy metals; pollutants; pollution; remediation; sulfate reducing bacteria; sulfates; sulfides; Thiobacillus; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication 13 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts; GeoRef; English; 2006-064109; 19th annual international conference on Soils, sediments, and water, Amherst, MA, United States, Oct. 20-23, 2003 Approved no
Call Number CBU @ c.wolke @ 5471 Serial 13
Permanent link to this record
 

 
Author Godard, R.R.
Title Mine Water Treatment – Frick-district Type Journal Article
Year 1970 Publication Min. Congr. J. Abbreviated Journal
Volume 56 Issue 3 Pages 36-&
Keywords mine water
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5160 ISBN Medium
Area Expedition Conference
Notes Mine Water Treatment – Frick-district; Isi:A1970f857900004; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 10126 Serial 10
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author Banks, S.B.
Title The UK coal authority minewater-treatment scheme programme: Performance of operational systems Type Journal Article
Year 2003 Publication Jciwem Abbreviated Journal
Volume 17 Issue 2 Pages 117-122
Keywords mine water treatment
Abstract This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-7359 ISBN Medium
Area Expedition Conference
Notes May; The UK coal authority minewater-treatment scheme programme: Performance of operational systems; Wos:000183641000009; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10018.pdf; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17457 Serial 9
Permanent link to this record
 

 
Author Juby, G.J.G.; Schutte, C.F.
Title Membrane Life in a Seeded-slurry Reverse Osmosis System Type Journal Article
Year 2000 Publication Water Sa Abbreviated Journal
Volume 26 Issue 2 Pages 239-248
Keywords mine water treatment desalination
Abstract Membrane replacement can be a major operating cost of a membrane plant. During the development of a novel desalination technique (the SPARRO process) for treating calcium sulphate scaling mine waters the expected life of tubular cellulose acetate membranes operating in the seeded-slurry mode was investigated.During four operating phases of the plant over a five-year period more than 9 000 h of operating data were obtained. Performance data showed that each operating phase was dominated by either membrane fouling or membrane hydrolysis. Membrane fouling was observed to begin near the front-end of the membrane stack and proceed towards the back. Hydrolysis, on the other hand, occurred first in the tail end of the stack and moved backwards towards the Front end modules. Although two detailed membrane autopsies were carried out no definitive statement can be made in respect of the causes of either membrane hydrolysis or membrane fouling. However, suggestions are presented to explain the observed fouling phenomenon in relation to the turbidity of the pretreated feed water and the presence of chlorine. It is proposed that the presence of radioactive isotopes in the mine water which become concentrated in the process contributes to the observed membrane hydrolysis. A membrane life of up to two years is projected for an improved pretreatment arrangement.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4738 ISBN Medium
Area Expedition Conference
Notes Membrane Life in a Seeded-slurry Reverse Osmosis System; Isi:000087101400013; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9715.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9715 Serial 8
Permanent link to this record