|   | 
Details
   web
Records
Author Mitchell, P.; Wheaton, A.
Title From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage Type Book Chapter
Year 1999 Publication (down) Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Bunker Hill Mine cost decontamination Idaho metal ores mines mitigation natural resources pollution reagents recovery Shoshone County Idaho sludge United States zinc ores 22 Environmental geology 27A Economic geology, geology of ore deposits
Abstract Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage; GeoRef; English; 2000-048642; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 3; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16593 Serial 296
Permanent link to this record
 

 
Author Berg, G.J.; Arthur, B.
Title Proposed mine water treatment in Wisconsin Type Book Chapter
Year 1999 Publication (down) Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords metals mines pollutants pollution remediation tailings United States waste water water water management water quality water resources water treatment Wisconsin 22, Environmental geology
Abstract Water quality standards are driving wastewater effluent limits to ultra-low levels in the nanogram/L range. Standards are proposed that require discharges to match background water quality. The new ultra-low level standards require cautious sampling techniques, super clean laboratory methods and more advanced treatment technologies. This paper follows a case history through water quality standards for ultra-low metals, laboratory selection, and the design of a wastewater treatment system that can meet the water quality standards which are required to permit a proposed copper and zinc mine in Northern Wisconsin. A high degree of care must be taken when sampling for ultra-low level metals. Both surface water and treated effluent samples present new challenges. Sampling methods used must assure that there are no unwanted contaminants being introduced to the samples. The selection of a laboratory is as critical as the construction of a state of the art wastewater treatment system. Treatment methods such as lime and sulfide precipitation have had a high degree of success, but they do have limitations. Given today's ultra-low standards, it is necessary to assess the ability of reverse osmosis, deionization, and evaporation to provide the high level of treatment required.
Address
Corporate Author Thesis
Publisher Sudbury Environmental Place of Publication Sudbury Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Proposed mine water treatment in Wisconsin; GeoRef; English; 2000-043747; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16588 Serial 451
Permanent link to this record
 

 
Author Eger, P.; Wagner, J.R.; Kassa, J.R.; Melchert, G.D.
Title Metal removal in wetland treatment systems Type Book Chapter
Year 1994 Publication (down) Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 80-88
Keywords acid mine drainage; cobalt; constructed wetlands; copper; flows; geochemistry; hydrology; metals; mines; Minnesota; nickel; peat; pollution; remediation; sediments; sulfides; surface water; United States; waste disposal; water quality; wetlands; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine Drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Metal removal in wetland treatment systems; GeoRef; English; 2007-045160; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 21; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6570 Serial 391
Permanent link to this record
 

 
Author Brown, A.
Title Geohydrology and adit plugging Type Book Chapter
Year 1995 Publication (down) Special Publication – Colorado Geological Survey, Report: 38 Abbreviated Journal
Volume Issue Pages 87-98
Keywords acid mine drainage; Colorado; construction; discharge; geochemistry; ground water; hydrochemistry; hydrology; lithofacies; metals; methods; mines; monitoring; pH; pollutants; pollution; remediation; Rio Grande County Colorado; stream transport; Summitville Mine; tunnels; underground installations; United States; water table 22 Environmental geology; 21 Hydrogeology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Posey, H.H.; Pendleton, J.A.; Van Zyl, D.J.A.
Language Summary Language Original Title
Series Editor Series Title Proceedings; Summitville forum '95 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 188421651x Medium
Area Expedition Conference
Notes Geohydrology and adit plugging; GeoRef; English; 1995-052685; Summitville forum '95, Fort Collins, CO, United States, Jan. 17-20, 1995 References: 6; illus. incl. 3 tables, geol. sketch map Approved no
Call Number CBU @ c.wolke @ 6467 Serial 434
Permanent link to this record
 

 
Author Plumlee, G.S.
Title Mine-drainage waters as potential economic resources Type Journal Article
Year 1995 Publication (down) SEG Newsletter Abbreviated Journal
Volume 22 Issue Pages 6-7
Keywords acid mine drainage; Colorado; concentration; geochemistry; hydrochemistry; metals; mine drainage; mineral resources; mines; remediation; Rio Grande County Colorado; Summitville Mine; United States; utilization 27A, Economic geology, geology of ore deposits
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine-drainage waters as potential economic resources; 2004-033372; References: 7; 1 table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6428 Serial 268
Permanent link to this record