|   | 
Details
   web
Records
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication (down) Process Metallurgy, vol.9, Part B Abbreviated Journal
Volume Issue Pages 559-567
Keywords acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Amils, R.; Ballester, A.
Language Summary Language Original Title
Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0444501932 Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16595 Serial 442
Permanent link to this record
 

 
Author Kepler, D.A.; Mc Cleary, E.C.
Title Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type Journal Article
Year 1994 Publication (down) Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal
Volume 1 Issue Pages 195-204
Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS
Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9722 Serial 55
Permanent link to this record
 

 
Author Goodman, G.T.
Title Ecology and the problems of rehabilitating wastes from mineral extraction Type Journal Article
Year 1974 Publication (down) Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences Abbreviated Journal
Volume 339 Issue 1618 Pages 373-387
Keywords minerals mining natural resources pollution waste disposal ecology mineral extraction visual ugliness health hazards safety hazards reclamation process development planning site purchase land clearance land forming stabilisation drainage revegetation rehabilitation of wastes Physics Manufacturing and Production
Abstract Environmental problems which may be associated with mineral extraction are: (a) the visual ugliness of open pits, waste tips, and working mess; (b) the nuisance of wind- and water-borne dusts; (c) the health hazards to wildlife, crops, livestock and man of locally increased environmental burdens of potentially toxic metals (e.g. Pb, Cd, As, Zn, Cu, Ni) derived from wind- and water-borne mine dusts and smelter smokes; (d) the safety hazards of surface subsidence and tip-slippage from deep-mining. All these disamenities can be cured or reduced by the reclamation process which involves a blend of socio-economic, legal, planning, civil engineering and biological expertise devoted to development planning, site purchase, land clearance, land forming, stabilization, drainage and revegetation of the affected site
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0080-4630 ISBN Medium
Area Expedition Conference
Notes Ecology and the problems of rehabilitating wastes from mineral extraction; 669765; Conference Paper; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16789 Serial 369
Permanent link to this record
 

 
Author Guo, F.; Yu, H.
Title Hydrogeochemistry and treatment of acid mine drainage in southern China Type Book Chapter
Year 1993 Publication (down) Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages 277-283
Keywords acid mine drainage Asia bacteria chemical reactions China coal mines ecology Far East geochemistry hydrochemistry Jiangxi China lime mines oxidation pH pollution sulfides surface water trace elements water quality 22 Environmental geology 02B Hydrochemistry
Abstract Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Hydrogeochemistry and treatment of acid mine drainage in southern China; GeoRef; English; 2002-028935; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 3; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16744 Serial 366
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Antonson, D.; Wagner, J.
Title Magnesium hydroxide as a treatment for acid mine drainage in northern Minnesota Type Book Chapter
Year 1993 Publication (down) Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages 204-217
Keywords acid mine drainage acidification alkaline earth metals chemical properties cobalt copper drainage experimental studies hydroxides laboratory studies lime magnesium magnesium hydroxide metals Minnesota nickel northern Minnesota oxides pH pollution porous materials reagents remediation residence time trace metals United States waste disposal zinc 22, Environmental geology
Abstract Three alkaline materials were investigated for their suitability to treat acid mine drainage generated by a research facility located at a remote site in northern Minnesota. The materials investigated were hydrated lime, sodium hydroxide, and magnesium hydroxide. All three reagents were successful at raising pH and removing trace metals from the drainage, but the magnesium hydroxide had the added benefit of producing a maximum pH of approximately 9.5, while the other two reagents resulted in pH values of 12 and greater. In addition, the magnesium hydroxide was available as a high solid content slurry (58%) which simplified application and handling, and which produced the lowest volume of sludge of the materials tested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Magnesium hydroxide as a treatment for acid mine drainage in northern Minnesota; GeoRef; English; 2002-028930; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 7; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16743 Serial 393
Permanent link to this record