|   | 
Details
   web
Records
Author Carland, R.M.
Title Use of natural sedimentary zeolites for metal ion recovery from hydrometallurgical solutions and for the environmental remediation of acid mine drainage Type Journal Article
Year 1995 Publication (up) Proceedings of the Xix International Mineral Processing Congress, Vol 4 Abbreviated Journal
Volume Issue Pages 95-100
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Use of natural sedimentary zeolites for metal ion recovery from hydrometallurgical solutions and for the environmental remediation of acid mine drainage; Isip:A1995be33e00020; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17179 Serial 145
Permanent link to this record
 

 
Author Bagdy, I.; Kaocsány, L.
Title Treatment of mine water for the protection of pumps Type Journal Article
Year 1982 Publication (up) Proceedings, 1st International Mine Water Congress, Budapest, Hungary Abbreviated Journal
Volume ABCD Supplementary volume Issue Pages 201-214
Keywords pumps mine water treatment sediment Hungary karst
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of mine water for the protection of pumps; 1; 3 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9509 Serial 470
Permanent link to this record
 

 
Author Benkovics, I.; Csicsák, J.; Csövári, M.; Lendvai, Z.; Molnár, J.
Title Mine Water Treatment – Anion-exchange and Membrane Process Type Journal Article
Year 1997 Publication (up) Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal
Volume 1 Issue Pages 149-157
Keywords uranium mining Hungary Mecsek Ore Mining Company waste water mine water chemistry nano-filtration reverse osmosis pilot plant mine water treatment treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine Water Treatment – Anion-exchange and Membrane Process; 1; FG 6 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9530 Serial 455
Permanent link to this record
 

 
Author Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R.
Title A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
Year 1999 Publication (up) Resour. Conserv. Recycl. Abbreviated Journal
Volume 27 Issue 1-2 Pages 157-167
Keywords mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella
Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Medium
Area Expedition Conference
Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9937 Serial 26
Permanent link to this record
 

 
Author Whitehead, P.G.
Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
Year 2005 Publication (up) Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 15-21
Keywords mine water treatment
Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16972 Serial 116
Permanent link to this record