|   | 
Details
   web
Records
Author Lovell, H.L.
Title Limestone Treatment Of Coal Mine Drainage Type Journal Article
Year 1971 Publication (down) Min. Congr. J. Abbreviated Journal
Volume 57 Issue 10 Pages 28-&
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5160 ISBN Medium
Area Expedition Conference
Notes Limestone Treatment Of Coal Mine Drainage; Wos:A1971k631900002; Times Cited: 1; J Allen Overton Jr, 1920 N St Nw, Washington, DC 20036; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9263 Serial 101
Permanent link to this record
 

 
Author Lovell, H.L.
Title Mine Water Treatment Control Type Journal Article
Year 1971 Publication (down) Min. Congr. J. Abbreviated Journal
Volume 57 Issue 6 Pages 83-&
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine Water Treatment Control; Wos:A1971j677200018; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9264 Serial 102
Permanent link to this record
 

 
Author Murayama, T.
Title Application Of Immobilized Thiobacillus-Ferrooxidans For Large-Scale Treatment Of Acid-Mine Drainage Type Journal Article
Year 1987 Publication (down) Methods Enzymol. Abbreviated Journal
Volume 136 Issue Pages 530-540
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Application Of Immobilized Thiobacillus-Ferrooxidans For Large-Scale Treatment Of Acid-Mine Drainage; Wos:A1987m167600047; Times Cited: 6; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9106 Serial 92
Permanent link to this record
 

 
Author Franchet, J.
Title An example of sulphate removal by nanofiltration – The treatment of iron ore mine water in Lorraine Type Journal Article
Year 1995 Publication (down) Membranes in Drinking Water Production Abbreviated Journal
Volume Issue Pages 27-31
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes An example of sulphate removal by nanofiltration – The treatment of iron ore mine water in Lorraine; Isip:A1995bh14e00006; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8899 Serial 136
Permanent link to this record
 

 
Author Sasaki, K.
Title Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs Type Journal Article
Year 2006 Publication (down) Mater. Trans. Abbreviated Journal
Volume 47 Issue 10 Pages 2457-2461
Keywords mine water treatment
Abstract A Mn-oxidizing fungus was isolated from a constructed wetland of Hokkaido (Japan), which is receiving the Mn-impacted drainage, and genetically and morphologically identified as Paraconiothyrium sp.-like strain. The optimum pHs were 6.45-6.64, where is more acidic than those of previously reported Mn-oxidizing fungi. Too much nutrient inhibited fungal Mn-oxidation, and too little nutrient also delayed Mn oxidation even at optimum pH. In order to achieve the oxidation of high concentrations of Mn like mine drainage containing several hundreds g-m(-3) of Mn, it is important to find the best mix ratio among the initial Mn concentrations, inocolumn size and nutrient concentration. The strain has still Mn-tolerance with more than 380 g-m(-3) of Mn, but high Mn(II) oxidation was limited by pH control and supplied nutrient amounts. The biogenic Mn deposit was poorly crystallized birnessite. The strain is an unique Mn-oxidizing fungus having a high Mn tolerance and weakly acidic tolerance, since there has been no record about the property of the strain. There is a potentiality to apply the strain to the environmental bioremediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Immobilization of Mn(II) ions by a Mn-oxidizing fungus – Paraconiothyrium sp.-like strain at neutral pHs; Wos:000242429300002; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16940 Serial 103
Permanent link to this record