toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kepler, D.A.; Mc Cleary, E.C. url  openurl
  Title Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type Journal Article
  Year 1994 Publication (down) Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal  
  Volume 1 Issue Pages 195-204  
  Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS  
  Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9722 Serial 55  
Permanent link to this record
 

 
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H. openurl 
  Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
  Year 1996 Publication (down) Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology  
  Abstract The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no  
  Call Number CBU @ c.wolke @ 16654 Serial 334  
Permanent link to this record
 

 
Author Goodman, G.T. openurl 
  Title Ecology and the problems of rehabilitating wastes from mineral extraction Type Journal Article
  Year 1974 Publication (down) Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences Abbreviated Journal  
  Volume 339 Issue 1618 Pages 373-387  
  Keywords minerals mining natural resources pollution waste disposal ecology mineral extraction visual ugliness health hazards safety hazards reclamation process development planning site purchase land clearance land forming stabilisation drainage revegetation rehabilitation of wastes Physics Manufacturing and Production  
  Abstract Environmental problems which may be associated with mineral extraction are: (a) the visual ugliness of open pits, waste tips, and working mess; (b) the nuisance of wind- and water-borne dusts; (c) the health hazards to wildlife, crops, livestock and man of locally increased environmental burdens of potentially toxic metals (e.g. Pb, Cd, As, Zn, Cu, Ni) derived from wind- and water-borne mine dusts and smelter smokes; (d) the safety hazards of surface subsidence and tip-slippage from deep-mining. All these disamenities can be cured or reduced by the reclamation process which involves a blend of socio-economic, legal, planning, civil engineering and biological expertise devoted to development planning, site purchase, land clearance, land forming, stabilization, drainage and revegetation of the affected site  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0080-4630 ISBN Medium  
  Area Expedition Conference  
  Notes Ecology and the problems of rehabilitating wastes from mineral extraction; 669765; Conference Paper; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16789 Serial 369  
Permanent link to this record
 

 
Author Smyth, D.J.A.; Blowes, D.W.; Benner, S.G.; Hulshof, A.M.; Nelson, J.D. isbn  openurl
  Title In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials Type Book Chapter
  Year 2001 Publication (down) Proceedings of the Eighth international conference on Tailings and mine waste '01 Abbreviated Journal  
  Volume Issue Pages 313-322  
  Keywords acid mine drainage; environmental management; ground water; in situ; permeability; pollution; reclamation; sulfate ion; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9058091821 Medium  
  Area Expedition Conference  
  Notes In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials; GeoRef; English; 2003-003552; Tailings and mine waste '01, Fort Collins, CO, United States, Jan. 16-19, 2001 References: 19; illus. Approved no  
  Call Number CBU @ c.wolke @ 5770 Serial 236  
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L. openurl 
  Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
  Year 2001 Publication (down) Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal  
  Volume Issue Pages 579-584  
  Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology  
  Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 16526 Serial 290  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: