|   | 
Details
   web
Records
Author Laspidou, C.S.
Title Constructed wetlands technology and water quality improvement: Recent advances Type Journal Article
Year 2005 Publication (down) Proceeding of the 9th International Conference on Environmental Science and Technology Vol B – Poster Presentations Abbreviated Journal
Volume Issue Pages B503-B508
Keywords mine water treatment
Abstract Today's demands for improved water quality in receiving waters are widespread and require the implementation of systems that are natural, low-cost and minimal-maintenance that could effectively treat polluted discharges. Wetlands are such systems and are recently receiving a lot of attention from scientists, ecologists and engineers, as they are deemed appropriate for reducing the impact of effluent and run-off on receiving waters. Since a large part of natural wetlands have been lost-about 53% of them in the United States from the 1780s to the 1980s-management options for improving receiving water quality, water reclamation and reuse involve the application of constructed wetlands technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands technology and water quality improvement: Recent advances; Isip:000237755500082; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16966 Serial 152
Permanent link to this record
 

 
Author Zaluski, M.
Title Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control Type Journal Article
Year 1999 Publication (down) Phytoremediation and Innovative Strategies for Specialized Remedial Applications Abbreviated Journal
Volume Issue Pages 205-210
Keywords mine water treatment
Abstract At many abandoned mine sites in the Western U.S., conventional treatment of AMD is not feasible due to the of lack of power and limited site accessibility. Therefore, three bioreactors were built at an abandoned mine site in Montana to demonstrate feasibility of treating AMD using sulphate reducing bacteria (SRB) in a passive water treatment train. The SRB are capable of increasing the pH and reducing the load of dissolved metals in the effluent. The reactors, constructed in the Fall of 1998, were designed to evaluate the SRB technology applied under different environmental conditions. Each bioreactor was designed with mechanisms to enable simulation of seasonal dry and wet climatic conditions. Two bioreactors were placed in trenches and one was constructed above the ground to investigate impact of seasonal freezing and thawing on SRB activity. Two bioreactors contain a passive pretreatment section to increase pH of water before the AMD enters the bioreactor chamber.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control; Isip:000082416500033; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17136 Serial 177
Permanent link to this record
 

 
Author Ntengwe, F.W.
Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
Year 2005 Publication (down) Phys. Chem. Earth Abbreviated Journal
Volume 30 Issue 11-16 Spec. Iss. Pages 726-734
Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World
Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.
Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17497 Serial 24
Permanent link to this record
 

 
Author Karl, D.J.; Rolsten, R.F.; Carmody, G.A.; Karl, M.E.
Title Treatment of Acid-mine Drainage Water with Alkaline By-products and Lime Blends Type Journal Article
Year 1983 Publication (down) Ohio J. Sci. Abbreviated Journal
Volume 83 Issue 2 Pages 36
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-0950 ISBN Medium
Area Expedition Conference
Notes Treatment of Acid-mine Drainage Water with Alkaline By-products and Lime Blends; Isi:A1983qk50900121; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9720 Serial 94
Permanent link to this record
 

 
Author Henderson, A.
Title The implementation of paste fill at the Henty Gold Mine Type Journal Article
Year 1998 Publication (down) Minefill'98 Abbreviated Journal
Volume 98 Issue 1 Pages 299-304
Keywords mine water treatment
Abstract The Henty Gold Mine, located ill Western Tasmania uses innovative solutions to effectively manage a mining operation in an environmentally sensitive setting and has been presented with several environmental awards. Fill is required as part of the mining method to provide passive ground support, minimise rock exposure and ensure maximum recovery of the small but high-grade orebody. The use of the whole portion of leach residue in the backfill reduces the surface tailing disposal requirements. Therefore, High Density Paste Fill (HDPF) has been selected as the most appropriate fill method to meet these objectives. Additional benefits include the minimisation of excess water from fill and the subsequent need for the collection and treatment of water and slimes. There are minimal equipment requirements during placement, thereby optimising mine resources for production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The implementation of paste fill at the Henty Gold Mine; Isip:000074225800048; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17142 Serial 181
Permanent link to this record