|   | 
Details
   web
Records
Author Schueck, J.H.
Title Limestone diversion wells; a low-maintenance, cost-effective method for treating acid-mine drainage with limestone Type Book Chapter
Year 1995 Publication (up) Guidebook for the Annual Field Conference of Pennsylvania Geologists, vol.60 Applied geology in the Lock Haven and Williamsport region, Clinton and Lycoming counties, northcentral Pennsylvania Abbreviated Journal
Volume Issue Pages 9-12
Keywords acid mine drainage; Babb Creek watershed; Blossburg coal basin; carbonate rocks; ground water; hydrology; limestone; Pennsylvania; pollution; remediation; sedimentary rocks; Tioga County Pennsylvania; United States; water wells; watersheds; wells 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Carnein, C.R.; Way, J.H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Limestone diversion wells; a low-maintenance, cost-effective method for treating acid-mine drainage with limestone; GeoRef; English; 1996-018760; 60th annual field conference of Pennsylvania geologists, Williamsport, PA, United States, Oct. 5-7, 1995 References: 3; 1 table, sketch map Approved no
Call Number CBU @ c.wolke @ 6420 Serial 77
Permanent link to this record
 

 
Author Zamzow, M.J.; Schultze, L.E.
Title Treatment of acid mine drainage using natural zeolites Type Journal Article
Year 1993 Publication (up) International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Abbreviated Journal
Volume 1993 Issue Pages 220-221
Keywords abandoned mines; acid mine drainage; clinoptilolite; experimental studies; feasibility studies; framework silicates; hydrochemistry; mines; Nevada; northeastern Nevada; phillipsite; remediation; Rio Tinto Deposit; silicates; surface water; United States; zeolite group abandoned mines acid mine drainage clinoptilolite experimental studies feasibility studies framework silicates hydrochemistry mines Nevada northeastern Nevada phillipsite remediation Rio Tinto Deposit silicates surface water United States zeolite group
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage using natural zeolites; GeoRef: 95-04036 1 table; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9998 Serial 192
Permanent link to this record
 

 
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication (up) J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Yernberg, W.R.
Title Improvements seen in acid-mine-drainage technology Type Journal Article
Year 2000 Publication (up) Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 67-70
Keywords acid mine drainage; bacteria; chemical weathering; coal mines; Colorado; copper ores; effects; geochemistry; hydrogen; inorganic acids; international cooperation; ions; lead ores; medical geology; metal ores; mines; molybdenum ores; oxidation; pH; pollution; prediction; pyrite; reclamation; remediation; research; risk assessment; silicates; soil treatment; solid waste; sulfides; sulfuric acid; Summitville Mine; tailings; tailings ponds; technology; United States; waste disposal; weathering; zinc ores 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Improvements seen in acid-mine-drainage technology; 2000-069686; illus. incl. sect., sketch map United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5808 Serial 73
Permanent link to this record
 

 
Author Reisinger, R.W.; Gusek, J.
Title Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming Type Journal Article
Year 1999 Publication (up) Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 49-53
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine copper hydrogeology mine drainage United States Wyoming Ferris Haggarty Mine
Abstract An historic underground copper mine in Wyoming is discharging neutral but copper-laden water into a pristine creek. The EPA-deferred site qualifies for reclamation by the Wyoming Abandoned Mine Land (AML) program. The cleanup goal is to restore the discharge so that the creek can eventually support a trout fishery. Hydrological and geochemical investigations underground have suggested two sources of mine water: one clean and the other containing copper. Results of bench- and pilot-scale tests support the viability of using low-cost passive treatment techniques to reduce copper concentrations in the near-freezing mine discharge.
Address R.W. Reisinger, Knight Piesold LLC, Denver, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming; 0434643; United-States 5; Geobase Approved no
Call Number CBU @ c.wolke @ 17637 Serial 263
Permanent link to this record