toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Macklin, M.G. url  openurl
  Title A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
  Year 2006 Publication (down) Geomorphology Abbreviated Journal  
  Volume 79 Issue 3-4 Pages 423-447  
  Keywords mine water treatment  
  Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16934 Serial 105  
Permanent link to this record
 

 
Author Bearcock, J.M. url  openurl
  Title Accelerated precipitation of ochre for mine water remediation Type Journal Article
  Year 2006 Publication (down) Geochim. Cosmochim. Acta Abbreviated Journal  
  Volume 70 Issue 18 Pages A42-A42  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Accelerated precipitation of ochre for mine water remediation; Wos:000241374200094; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16919 Serial 104  
Permanent link to this record
 

 
Author Totsche, O.; Fyson, A.; Kalin, M.; Steinberg Christian, E.W. openurl 
  Title Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters Type Journal Article
  Year 2006 Publication (down) ESPR Environmental Science and Pollution Research Abbreviated Journal  
  Volume 13 Issue 4 Pages 215-224  
  Keywords Abwasseraufbereitung Bergbau Titration Säuregehalt Grundwasser Pufferlösung Neutralisation Titrationskurve Bergbauabwasser  
  Abstract The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the BNC (Base Neutralization Capacity), is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. It is demonstrated that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion. Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.  
  Address Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin, DE; Boojum Research, Toronto, CA; Humboldt-Universität Berlin, DE  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344 ISBN Medium  
  Area Expedition Conference  
  Notes Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters; 39481, BERG , 13.11.06; Words: 519; 200610 05282; 10 Seiten, 15 Bilder, 2 Tabellen, 39 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3BX *chemische Grundlagen* 3IFC *Messung und Prüfung chemischer Größen, chemische Analytik* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17580 Serial 224  
Permanent link to this record
 

 
Author Jarvis, A.P. url  openurl
  Title Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK Type Journal Article
  Year 2006 Publication (down) Environmental Pollution Abbreviated Journal  
  Volume 143 Issue 2 Pages 261-268  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16928 Serial 109  
Permanent link to this record
 

 
Author Lee, B.H. url  openurl
  Title Constructed wetlands: Treatment of concentrated storm water runoff (Part A) Type Journal Article
  Year 2006 Publication (down) Environmental Engineering Science Abbreviated Journal  
  Volume 23 Issue 2 Pages 320-331  
  Keywords mine water treatment  
  Abstract The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. For those six constructed wetland filters receiving heavy metals, an obvious breakthrough of dissolved nickel was recorded after road salting during the first winter. However, a breakthrough of nickel was not observed, since the inflow pH was raised to eight after the first year of operation. High pH facilitated the formation of particulate metal compounds such as nickel hydroxide. During the second year, reduction efficiencies of heavy metal, 5-days at 20 degrees C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS) improved considerably. Concentrations of BOD were frequently < 20 mg/L. However, concentrations for SS were frequently > 30 mg/L. These are the two international thresholds for secondary wastewater treatment. The BOD removal increased over time due to biomass maturation, and the increase of pH. An analysis of the findings with case-based reasoning can be found in the corresponding follow-up paper (Part B).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands: Treatment of concentrated storm water runoff (Part A); Wos:000236600700007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16932 Serial 112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: