|   | 
Details
   web
Records
Author Landers, J.
Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
Year 2006 Publication (up) Civil Engineering Abbreviated Journal
Volume 76 Issue 7 Pages 30-31
Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America
Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7024 ISBN Medium
Area Expedition Conference
Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17490 Serial 318
Permanent link to this record
 

 
Author Chironis, N.P.
Title Mine-built ponds economically clear acid mine waters Type Journal Article
Year 1987 Publication (up) Coal Age Abbreviated Journal
Volume Issue 1 Pages 58-61
Keywords Biologische-Abwasserreinigung Waessrige-Loesung Industrieabwasser Pflanze Gewaesser Ph-Wert Abwasserbehandlung Saeure Buntmetalle Grubenwasser
Abstract Bestimmte Wasserpflanzen in Teichen können Metalle aus sauren Grubenwässern binden durch Adsorption, Filtration und Einlagerung in Wurzeln und Blättern. Algen und oxydierende Bakterien unterstützen diesen Reinigungsprozeß. Angaben zur Anlage der Teiche: Durchflußkapazität 20 l/min bis 38 l/min, Spülung von 18 m(exp 2) pro 4 l Durchflußmenge, Wasserhöhe 5 cm bis 10 cm, der pH-Wert des austretenden Wassers ist größer als 4,0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine-built ponds economically clear acid mine waters; 316, BERG , 01.01.87; Words: 257; U8712 3772 586; 3 Bilder, 3 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3UMB *Abfallstoffe, behandlung, vermeidung, verwertung, wirtschaft* 3PZ *Bioverfahrenstechnik, Biotechnologie*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17616 Serial 418
Permanent link to this record
 

 
Author Robinson, J.D.F.
Title Wetland treatment of coal-mine drainage Type Journal Article
Year 1998 Publication (up) Coal International Abbreviated Journal
Volume 246 Issue 3 Pages 114-115
Keywords coal mines; Europe; mine drainage; mines; pH; pollution; UK Coal Authority; United Kingdom; water; water treatment; Western Europe; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-6941 ISBN Medium
Area Expedition Conference
Notes Wetland treatment of coal-mine drainage; 2000-013457; References: 1; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6129 Serial 260
Permanent link to this record
 

 
Author Wiessner, A.
Title The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke Type Journal Article
Year 1998 Publication (up) Colloids and Surfaces a-Physicochemical and Engineering Aspects Abbreviated Journal
Volume 139 Issue 1 Pages 91-97
Keywords mine water treatment
Abstract To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke; Wos:000074411100012; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17147 Serial 133
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M.
Title The roles of spent mushroom substrate for the mitigation of coal mine drainage Type Journal Article
Year 1994 Publication (up) Compost Science and Utilization Abbreviated Journal
Volume 2 Issue 4 Pages 84-94
Keywords acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology
Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17639 Serial 233
Permanent link to this record