toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olaniran, A.O. url  openurl
  Title Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes Type Journal Article
  Year 2006 Publication (up) Chemosphere Abbreviated Journal  
  Volume 63 Issue 4 Pages 600-608  
  Keywords mine water treatment  
  Abstract The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to deter-mine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P < 0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes; Wos:000237379500007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16936 Serial 111  
Permanent link to this record
 

 
Author Landers, J. openurl 
  Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
  Year 2006 Publication (up) Civil Engineering Abbreviated Journal  
  Volume 76 Issue 7 Pages 30-31  
  Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America  
  Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17490 Serial 318  
Permanent link to this record
 

 
Author Wiessner, A.; Kuschk, P.; Buddhawong, S.; Stottmeister, U.; Mattusch, J.; Kästner, M. openurl 
  Title Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions Type Journal Article
  Year 2006 Publication (up) Engineering in Life Sciences Abbreviated Journal  
  Volume 6 Issue 6 Pages 584-592  
  Keywords Grubenentwässerung biologische-Abwasserreinigung Pflanze Zink Eisen Schwermetallentfernung Nassverfahren Grundwasserströmung Langzeitversuch Regen Prozesswirkungsgrad Reaktionsgeschwindigkeit Binsen Hydrokultur  
  Abstract A system of planted and implanted small-scale SSF (subsurface flow) and SF (surface flow) constructed wetlands together with HP (hydroponic systems) were installed to compare the removal efficiencies of Fe and Zn from AMD (acid mine drainage) under long-term field conditions. Maximum removal of 94 % – 97 % (116 mg/m(exp 2)/d – 142 mg/m(exp 2)/d) for Fe and 69 % – 77 % (6.2 mg/m(exp 2)/d – 7.9 mg/m(exp 2)/d) for Zn was calculated for the planted soil systems. The planted SSF was most sensitive to heavy rain fall. Short-term increases of the metal concentration in the outflows, short-term breakdowns of the Fe removal and continual long-term breakdowns of the Zn removal were observed. In contrast to Zn removal, all wetland types are applicable for Fe removal with maximum removal in the range of 60 % – 98 %. Most of the removed Fe and Zn was transformed and deposited inside the soil bed. The amount absorbed by the plants (0.03 % to 0.3 %) and gravel-associated soil beds (0.03 % to 1.7 %) of the total input were low for both metals. The response of the planted SSF to rainfall suggests a remobilisation of metals accumulated inside the rhizosphere and the importance of buffering effects of the surface water layers of SF systems. The importance of plants for metal removal was shown.  
  Address UFZ – Umweltforschungszentrum Leipzig-Halle, DE; King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, TH  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-0240 ISBN Medium  
  Area Expedition Conference  
  Notes Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions; 39931, BERG , 08.01.07; Words: 506; 200612 02721; 9 Seiten, 7 Bilder, 3 Tabellen, 36 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3PZI *biologischer Abbau und Bioremediation*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17578 Serial 211  
Permanent link to this record
 

 
Author Lee, B.H. url  openurl
  Title Constructed wetlands: Treatment of concentrated storm water runoff (Part A) Type Journal Article
  Year 2006 Publication (up) Environmental Engineering Science Abbreviated Journal  
  Volume 23 Issue 2 Pages 320-331  
  Keywords mine water treatment  
  Abstract The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. For those six constructed wetland filters receiving heavy metals, an obvious breakthrough of dissolved nickel was recorded after road salting during the first winter. However, a breakthrough of nickel was not observed, since the inflow pH was raised to eight after the first year of operation. High pH facilitated the formation of particulate metal compounds such as nickel hydroxide. During the second year, reduction efficiencies of heavy metal, 5-days at 20 degrees C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS) improved considerably. Concentrations of BOD were frequently < 20 mg/L. However, concentrations for SS were frequently > 30 mg/L. These are the two international thresholds for secondary wastewater treatment. The BOD removal increased over time due to biomass maturation, and the increase of pH. An analysis of the findings with case-based reasoning can be found in the corresponding follow-up paper (Part B).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed wetlands: Treatment of concentrated storm water runoff (Part A); Wos:000236600700007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16932 Serial 112  
Permanent link to this record
 

 
Author Jarvis, A.P. url  openurl
  Title Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK Type Journal Article
  Year 2006 Publication (up) Environmental Pollution Abbreviated Journal  
  Volume 143 Issue 2 Pages 261-268  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16928 Serial 109  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: