|   | 
Details
   web
Records
Author Faulkner, B.B.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Treatment of acid mine drainage by passive treatment systems Type Book Chapter
Year 1996 Publication (up) Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical reactions; constructed wetlands; controls; depositional environment; ground water; heavy metals; limestone; microorganisms; pollution; sedimentary rocks; substrates; surface water; techniques; United States; water pollution; water treatment; West Virginia; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by passive treatment systems; GeoRef; English; 2004-051153; Edition: 2 References: 13; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6363 Serial 384
Permanent link to this record
 

 
Author Burnett, M.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Injection of limestone into underground mines for AMD control Type Book Chapter
Year 1996 Publication (up) Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical composition; coal fields; concentration; environmental analysis; environmental management; experimental studies; geologic hazards; ground water; hazardous waste; heavy metals; hydrology; land subsidence; limestone; mines; mining; mining geology; pH; pollution; Preston County West Virginia; reclamation; runoff; sedimentary rocks; Sovern Run Mine; surface water; underground mining; United States; waste management; water quality; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Injection of limestone into underground mines for AMD control; GeoRef; English; 2004-051160; Edition: 2 References: 2; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 6370 Serial 427
Permanent link to this record
 

 
Author Skousen, J.G.
Title An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs Type Journal Article
Year 1991 Publication (up) Environmental Management for the 1990s Abbreviated Journal
Volume Issue Pages 173-178
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs; Isip:A1991bs89e00024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9041 Serial 148
Permanent link to this record
 

 
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type Journal Article
Year 2001 Publication (up) Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record
 

 
Author Skousen, J.G.
Title Anoxic limestone drains for acid mine drainage treatment Type Journal Article
Year 1991 Publication (up) Green Lands Abbreviated Journal
Volume 21 Issue 4 Pages 30-35
Keywords ALD passive treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-3408 ISBN Medium
Area Expedition Conference
Notes Anoxic limestone drains for acid mine drainage treatment; 9; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9905 Serial 244
Permanent link to this record