|   | 
Details
   web
Records
Author Gusek, J.J.
Title Passive-treatment of acid rock drainage: what is the potential bottom line? Type Journal Article
Year 1995 Publication Min. Eng. Abbreviated Journal
Volume 47 Issue 3 Pages 250-253
Keywords mining acid drainage passive treatment system 3 Geology
Abstract Passive-treatment systems that mitigate acid-rock drainage from coal mines have been operating since the mid-1980s. Large systems at metal mines are being contemplated. A typical man-made passive-treatment-system can mimic a natural wetland by employing the same geochemical principles. Passive-treatment systems, however, are engineered to optimize the biogeochemical processes occurring in a natural wetland ecosystem. The passive-treatment methodology holds promise over chemical neutralization because large volumes of sludge are not generated. Metals may be precipitated as oxides, sulfides or carbonates in the passive-treatment system substrate. The key goal of a passive-treatment system is the long-term immobilization of metals in the substrate materials. The passive-treatment technique may not be applicable in all mine-drainage situations. -from Author
Address Knight-Piesold & Co, 1050 17th St., Suite 500, Denver, CO, 80265- 0550, USA
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Passive-treatment of acid rock drainage: what is the potential bottom line?; (1121863); 95k-12693; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17638 Serial 365
Permanent link to this record
 

 
Author Goodman, G.T.
Title Ecology and the problems of rehabilitating wastes from mineral extraction Type Journal Article
Year 1974 Publication Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences Abbreviated Journal
Volume 339 Issue 1618 Pages 373-387
Keywords minerals mining natural resources pollution waste disposal ecology mineral extraction visual ugliness health hazards safety hazards reclamation process development planning site purchase land clearance land forming stabilisation drainage revegetation rehabilitation of wastes Physics Manufacturing and Production
Abstract Environmental problems which may be associated with mineral extraction are: (a) the visual ugliness of open pits, waste tips, and working mess; (b) the nuisance of wind- and water-borne dusts; (c) the health hazards to wildlife, crops, livestock and man of locally increased environmental burdens of potentially toxic metals (e.g. Pb, Cd, As, Zn, Cu, Ni) derived from wind- and water-borne mine dusts and smelter smokes; (d) the safety hazards of surface subsidence and tip-slippage from deep-mining. All these disamenities can be cured or reduced by the reclamation process which involves a blend of socio-economic, legal, planning, civil engineering and biological expertise devoted to development planning, site purchase, land clearance, land forming, stabilization, drainage and revegetation of the affected site
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0080-4630 ISBN Medium
Area Expedition Conference
Notes Ecology and the problems of rehabilitating wastes from mineral extraction; 669765; Conference Paper; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16789 Serial 369
Permanent link to this record
 

 
Author Fischer, R.; Reissig, H.; Gockel, G.; Seidel, K.H.; Guderitz, T.
Title Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI Type Journal Article
Year 1998 Publication Braunkohle, Surface Mining Abbreviated Journal
Volume 50 Issue 3 Pages 273-278
Keywords chemical reactions; mathematical methods; methods; mine drainage; mining; pH; remediation; reservoirs; surface mining 22 Environmental geology; 02B Hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-2719 ISBN Medium
Area Expedition Conference
Notes Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI; 253811-4; illus. Federal Republic of Germany (DEU); GeoRef In Process; German Approved no
Call Number CBU @ c.wolke @ 6219 Serial 378
Permanent link to this record
 

 
Author Fernandez Rubio, R.
Title Un recurso valioso las aguas de mina. A valuable resource, mine waters Type Journal Article
Year 2001 Publication Industria y Mineria Abbreviated Journal
Volume 345 Issue Pages 14-22
Keywords acid mine drainage; Africa; aquifers; case studies; East Africa; Europe; ground water; hydrogeochemical exploration; hydrogeological survey; Iberian Peninsula; injection; mining; mining geology; open-pit mining; pollution; Portugal; Southern Europe; surface mining; surface water; underground mining; water supply; water treatment; Zambia 21, Hydrogeology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1137-8042 ISBN Medium
Area Expedition Conference
Notes Un recurso valioso las aguas de mina. A valuable resource, mine waters; 374358-2; illus. Spain (ESP); GeoRef In Process; Spanish Approved no
Call Number CBU @ c.wolke @ 5784 Serial 381
Permanent link to this record
 

 
Author Earley, D., III; Schmidt, R.D.; Kim, K.
Title Is sustainable mining an oxymoron? Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acids data processing development ground water leaching mineral resources mining mining geology models monitoring pollution production solutions 26A Economic geology, general, deposits 22 Environmental geology
Abstract Sustainable mining is generally considered to be an oxymoron because mineral deposits are viewed as nonrenewable resources that are fixed in the crust. However, minerals are conserved and recycled by plate tectonics which continually creates and destroys ore deposits. Though it is true that rock cycles have much longer periods than biomass cycles, the crust is essentially an infinite reservoir so long as we continue to invest in mineral exploration and processing technology. Implicit in the definition of sustainable development is the recognition that human development of resources in one reservoir may subsequently degrade resources supplied by another. The depreciation of overlapping and adjacent resources is often externalized in the cost to benefit accounting and cannot be sustained if the integrated cost/benefit ratio is greater than 1. The greatest obstacle to sustainability in mining is the expanding scale of excavation required to develop leaner ores because this activity degrades connected resources. In the case of open pit, sulfide ore mining the disturbed land may produce acid rock drainage (ARD). Because ARD will self-generate over the course of tens to hundreds of years the cost of controlling this pollution and rehabilitating mined lands is large and often spread over many generations. Secondary production of minerals from partially excavated deposits where there are preexisting environmental impacts and mine infrastructure help to reduce the risk of depreciating pristine resources, provided that new mining operations “do no (additional) harm” (Margoles, 1996). In turn, a percentage of the profits derived from secondary mineral production can be used for rehabilitation of the previously mined lands. These lands contain significant, albeit low grade, metal concentrations. These concepts are being developed and tested at the Mineral Park Sustainable Mining Research Facility where an in situ copper sulfide mining field experiment was conducted. Monitoring data and computer modeling indicate that ARD is not generated after closure. This is because the ore is not disturbed and is left saturated, whereas unsaturated conditions generate acidic drainage. The short term risk of groundwater contamination is mitigated by utilizing an exempt mine pit to capture any leach solutions that are not intercepted by the wellfield. Using green accounting techniques and transfer models it can be communicated that this mining scenario is an approach to sustainability.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 1997 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-051450; Geological Society of America, 1997 annual meeting, Salt Lake City, UT, United States, Oct. 20-23, 1997; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16638 Serial 396
Permanent link to this record