|   | 
Details
   web
Records
Author Meek, F.A., Jr.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Evaluation of acid prevention techniques used in surface mining Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acidic composition; acidification; Allegheny Mountains; Appalachians; central West Virginia; coal mines; controls; environmental analysis; environmental management; ground water; lime; mines; North America; phosphates; pollution; preventive measures; reclamation; remediation; spoils; surface water; United States; Upshur County West Virginia; water quality; water treatment; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Evaluation of acid prevention techniques used in surface mining; GeoRef; English; 2004-051150; Edition: 2 References: 5; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6360 Serial 301
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B.
Title Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes (up) Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record
 

 
Author Schoeman, J.J.; Steyn, A.
Title Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa Type Journal Article
Year 2001 Publication Desalination Abbreviated Journal
Volume 133 Issue 1 Pages 13-30
Keywords underground mine water treatment technologies reverse osmosis electrodialysis reversal ion-exchange water quality brine disposal treatment costs
Abstract Grootvlei Proprietary Mines Ltd is discharging between 80 and 100 Ml/d underground water into the Blesbokspruit. This water is pumped out of the mine to keep the underground water at such a level as to make mining possible. The water is of poor quality because it contains high TDS levels (2700-3800 mg/l) including high concentrations of iron, manganese, sulphate, calcium, magnesium, sodium and chloride. This water will adversely affect the water ecology in the Blesbokspruit, and it will significantly increase the TDS concentration of one of the major water resources if not treated prior to disposal into the stream. Therefore, alternative water desalination technologies were evaluated to estimate performance and the economics of the processes for treatment of the mine water. It was predicted that water of potable quality should be produced from the mine water with spiral reverse osmosis (SRO). It was demonstrated that it should be possible to reduce the TDS of the mine water (2000-2700-3400-4500 mg/l) to potable standards with SRO (85% water recovery). The capital costs (pretreatment and desalination) for a 80 Ml/d plant (worst-case water) were estimated at US$35M. Total operating costs were estimated at 88.1c/kl. Brine disposal costs were estimated at US$18M. Therefore, the total capital costs are estimated at US$53M. It was predicted that it should be possible to produce potable water from the worst-case feed water (80 Ml/d) with the EDR process. It was demonstrated that the TDS in the feed could be reduced from 4178 to 246 mg/l in the EDR product (65% water recovery). The capital costs (pretreatment plus desalination) to desalinate the worst-case feed water to potable quality with EDR is estimated at US$53.3M. The operational costs are estimated at 47.6 c/kl. Brine disposal costs were estimated at US$42M. Therefore, the total capital costs are estimated at US$95.3 M. It was predicted that it should be possible to produce potable water from the mine water with the GYP-CIX ion- exchange process. It was demonstrated that the feed TDS (2000- 4500 mg/l) could be reduced to less than 240 mg/l (54% water recovery for the worst-case water). The capital cost for an 80 Ml/d ion-exchange plant (worst-case water) was estimated at US$26.7M (no pretreatment). Operational costs were estimated at 60.4 c/kl. Brine disposal costs were estimated at US$55.1M. Therefore, the total desalination costs were estimated at US$81.8M. The capital outlay for a SRO plant will be significantly less than that for either an EDR or a GYP-CIX plant. The operating costs, however, of the RO plant are significantly higher than for the other two processes. Potable water sales, however, will bring more in for the RO process than for the other two processes because a higher water recovery can be obtained with RO. The operating costs minus the savings in water sales were estimated at 17.2; 6.7 and US$8.6M/y for the RO, EDR and GYP-CIX processes, respectively (worst case). Therefore, the operational costs of the EDR and GYP-CIX processes are the lowest if the sale of water is taken into consideration. This may favour the EDR and GYP-CIX processes for the desalination of the mine water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Medium
Area Expedition Conference
Notes (up) Feb. 10; Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa; Isi:000167087500002; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10184.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17480 Serial 23
Permanent link to this record
 

 
Author Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M.
Title Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
Year 1999 Publication Ecological Engineering Abbreviated Journal
Volume 12 Issue 3-4 Pages 353-372
Keywords mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management
Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.
Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8574 ISBN Medium
Area Expedition Conference
Notes (up) Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 10596 Serial 25
Permanent link to this record
 

 
Author Turek, M.; Gonet, M.
Title Nanofiltration in the utilization of coal-mine brines Type Journal Article
Year 1997 Publication Desalination Abbreviated Journal
Volume 108 Issue 1-3 Pages 171-177
Keywords Entsalzung Entsalzungsanlage Umkehrosmose Membran Kohlenbergwerk Natriumchlorid Abwasser Verdampfung Energieverbrauch Nanofiltration mine water treatment
Abstract The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Medium
Area Expedition Conference
Notes (up) Feb; Nanofiltration in the utilization of coal-mine brines; Wos:A1997wk45600023; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/8724.pdf; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8724 Serial 29
Permanent link to this record