|   | 
Details
   web
Records
Author Norton, P.J.
Title The Control of Acid Mine Drainage with Wetlands Type Journal Article
Year 1992 Publication Mine Water Env. Abbreviated Journal
Volume 11 Issue 3 Pages 27-34
Keywords acid mine drainage construction chemistry artificial wetlands pollution control performance evaluation coal mines pollution control and prevention
Abstract The recent increases in environmental legislation, especially in the USA'have meant that there is a need on behalf of the mining companies for more judicious operational planning and more thorough restoration techniques in order to reduce costs and prevent violation of the smctly enforced regulations. Water pollution is probably the greatest problem and many less enlightened operators, especially for example, in surface coal milling in Pennsylvania, have been forced into liquidation after having been unable to meet the severe restrictions on Acid Mine Drainage (AMD). The problems of AMD are also inherent in most forms of metalliferous and coal mining and also in some types of aggregate quarrying. As excavations go deeper in search of ever diminishing reserves then they are more likely to encounter groundwater which can become polluted if insufficient care is not taken. It is to be expected that the laws will also become more severe than they are at present in Europe and methods of treatment of AMD will need to be developed that are more efficient than the costly chemical methods currently used. Research by the author and others into the source of AMD pollution and its treatment with engineered wetlands and other operational methods are discussed in the paper. The methods have- the distinct benefit that they are cheap to install, are cost effective over a long period with the minimum of supervision and are environmentally acceptable to the planning and regulatory authorities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) The Control of Acid Mine Drainage with Wetlands; 1; 1 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17401 Serial 284
Permanent link to this record
 

 
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H.
Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
Year 1996 Publication Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal
Volume Issue Pages 303-311
Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology
Abstract The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no
Call Number CBU @ c.wolke @ 16654 Serial 334
Permanent link to this record
 

 
Author Banks, S.B.
Title The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 161-164
Keywords Wetlands and estuaries Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) constructed wetland mine drainage water treatment pollutant removal United Kingdom
Abstract The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.
Address S.B. Banks, Scott Wilson Kirkpatrick/Co. Ltd., Rose Hill West, Chesterfield S40 1JF, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes (down) The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes; 2530421; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17519 Serial 467
Permanent link to this record
 

 
Author
Title The BioSulphide Process to treat acid mine drainage and Anaconda tailings at Caribou Mine, New Brunswick Type RPT
Year 2002 Publication Abbreviated Journal
Volume 2002-3 Issue Pages 138
Keywords acid mine drainage base metals bioremediation BioSulfide Process biosulfides Canada Caribou Mine copper Eastern Canada experimental studies heavy metals laboratory studies lead Maritime Provinces metal ores metals New Brunswick pollution recovery remediation sulfides tailings waste management water treatment zinc 22 Environmental geology 27A Economic geology, geology of ore deposits
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Biomet Mining Corporation, R.B.C.C. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) The BioSulphide Process to treat acid mine drainage and Anaconda tailings at Caribou Mine, New Brunswick; 2004-045115; GeoRef; English; 1702-2649 illus. Approved no
Call Number CBU @ c.wolke @ 16509 Serial 495
Permanent link to this record
 

 
Author Greben, H.A.; Matshusa, M.P.; Maree, J.P.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 339-345
Keywords water pollution biological Sulphate removal technology sulphate acidity metals treatment technique
Abstract Mining is implicated as a significant contributor to water pollution, the prime reason being, that pyrites oxidize to sulphuric acid when exposed to air and water. Mine effluents, often containing sulphate, acidity and metals, should be treated to render it suitable for re-use in the mining industry, for irrigation of crops or for discharge in water bodies. This study describes the removal of all three mentioned pollutants in mine effluents, from different origins, containing different concentrations of various metals. The objectives were achieved, applying the biological sulphate removal technology, using ethanol as the carbon and energy source. It was shown that diluting the mine effluent with the effluent from the biological treatment, the pH increased due to the alkalinity in the treated water while the metals precipitated with the produced sulphide. When this treatment regime was changed and the mine water was fed undiluted, it was found that the metals stimulated the methanogenic bacteria (MB) as trace elements. This resulted in a high COD utilization of the MB, such that too little COD was available for the SRB. Metal removal in all three studies was observed and in most instances the metals were eliminated to the required disposal concentration.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes (down) The biological Sulphate removal technology; 1; AMD ISI | Wolkersdorfer; FG 'aha' 3 Abb., 9 Tab. Approved no
Call Number CBU @ c.wolke @ 17347 Serial 367
Permanent link to this record