toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lovell, H.L. url  openurl
  Title Limestone Treatment Of Coal Mine Drainage Type Journal Article
  Year 1971 Publication Min. Congr. J. Abbreviated Journal  
  Volume 57 Issue 10 Pages 28-&  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-5160 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Limestone Treatment Of Coal Mine Drainage; Wos:A1971k631900002; Times Cited: 1; J Allen Overton Jr, 1920 N St Nw, Washington, DC 20036; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 9263 Serial 101  
Permanent link to this record
 

 
Author Sibrell, P.L. url  openurl
  Title Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA Type Journal Article
  Year 2006 Publication Aquacultural Engineering Abbreviated Journal  
  Volume 34 Issue 2 Pages 61-71  
  Keywords mine water treatment  
  Abstract Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species Such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and Survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 X P(CO2)(1/2); R-2 = 0.975. No significant acidic incursions were noted for the control water over the course of the Study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. (C) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA; Wos:000235568800001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16942 Serial 113  
Permanent link to this record
 

 
Author Bosman, D.J. url  openurl
  Title Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation Type Journal Article
  Year 1983 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 15 Issue 2 Pages 71-84  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation; Wos:A1983qg97300005; Times Cited: 7; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 14794 Serial 95  
Permanent link to this record
 

 
Author Zhuang, J.M. url  openurl
  Title Lignor(TM) process for acidic rock drainage treatment Type Journal Article
  Year 2004 Publication Environ. Technol. Abbreviated Journal  
  Volume 25 Issue 9 Pages 1031-1040  
  Keywords mine water treatment  
  Abstract The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor(TM) process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the clotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor(TM) process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 – 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor(TM) process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor(TM) process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Lignor(TM) process for acidic rock drainage treatment; Wos:000224971800006; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16998 Serial 117  
Permanent link to this record
 

 
Author Evangelou, V.P. url  openurl
  Title Pyrite microencapsulation technologies: Principles and potential field application Type Journal Article
  Year 2001 Publication Ecological Engineering Abbreviated Journal  
  Volume 17 Issue 2-3 Pages 165-178  
  Keywords mine water treatment Acid mine drainage Acidity Alkalinity Amelioration Coating Oxidation Surface reactions  
  Abstract In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes (down) July 01; Pyrite microencapsulation technologies: Principles and potential field application; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10063.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10063 Serial 37  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: