|   | 
Details
   web
Records
Author Fripp, J.; Ziemkiewicz, P.F.; Charkavorki, H.
Title Acid Mine Drainage Treatment Type Journal Article
Year 2000 Publication Ecosystem Management and Restoration Research Program Technical Notes Abbreviated Journal
Volume Erdc Tn-Emrrp-Sr-14 Issue Pages 7
Keywords AMD treatment sampling
Abstract Contaminated water flowing from abandoned coal mines is one of the most significant contributors to water pollution in former and current coal-producing areas. Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures. In the Appalachian Mountains of the eastern United States alone, more than 7,500 miles of streams are impacted. The Pennsylvania Fish and Boat Commission estimates that the economic losses on fisheries and recreational uses are approximately $67 million annually (ref). While most modern coal-mining operations (Figure 1) must meet strict environmental regulations concerning mining techniques and treatment practices, there are thousands of abandoned mine sites in the United States (Figure 2). Treatment of a single site can result in the restoration of several miles of impacted streams. The purpose of this document is to briefly summarize key issues related to AMD treatment. This document is intended as a brief overview; thus, it is neither inclusive nor exhaustive. The technical note presents the preliminary planning issues
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Acid Mine Drainage Treatment; 2; als Datei vorhanden 5 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17344 Serial 374
Permanent link to this record
 

 
Author Jage, C.R.; Zipper, C.E.
Title Acid-mine drainage treatment using successive alkalinity-producing systems Type RPT
Year 2000 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; alkalinity; Appalachians; carbonate rocks; decontamination; dissolved materials; dissolved oxygen; limestone; North America; oxygen; pH; pollution; reclamation; sedimentary rocks; United States; Virginia; waste management; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Virginia Polytechnic Institute and State University, P.R.P.B.V.A.U.S. Series Title Powell River Project research and education program reports Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Acid-mine drainage treatment using successive alkalinity-producing systems; 2002-029549; GeoRef; English; References: 12; illus. incl. 2 tables U. S. Geological Survey, Library, Reston, VA, United States Approved no
Call Number CBU @ c.wolke @ 5882 Serial 343
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes (up) Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Sibrell, P.L.
Title ARD remediation with limestone in a CO2 pressurized reactor Type Journal Article
Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal
Volume Issue Pages 1017-1026
Keywords mine water treatment
Abstract We evaluated a new process for remediation of acid rock drainage (ARD). The process treats ARD with intermittently fluidized beds of granular limestone maintained within a continuous now reactor pressurized with CO2. Tests were performed over a thirty day period at the Toby Creek mine drainage treatment plant, Elk County, Pennsylvania in cooperation with the Pennsylvania Department of Environmental Protection. Equipment performance was established at operating pressures of 0, 34, 82, and 117 kPa using an ARD flow of 227 L/min. The ARD had the following characteristics: pH, 3.1; temperature, 10 OC; dissolved oxygen, 6.4 mg/L; acidity, 260 mg/L; total iron, 21 mg/L; aluminum, 22 mg/L; manganese, 7.5 mg/L; and conductivity, 1400 muS/cm. In all cases tested, processed ARD was net alkaline with mean pH and alkalinities of 6.7 and 59 mg/L at a CO2 pressure of 0 kPa, 6.6 and 158 mg/L at 34 kPa, 7.4 and 240 mg/L at 82 kPa, and 7.4 and 290 mg/L at 117 kPa. Processed ARD alkalinities were correlated to the settled bed depth (p <0.001) and CO2 pressure (p <0.001). Iron, aluminum, and manganese removal efficiencies of 96%, 99%, and 5%, respectively, were achieved with filtration following treatment. No indications of metal hydroxide precipitation or armoring of the limestone were observed. The surplus alkalinity established at 82 kPa was successful in treating an equivalent of 1136 L/min (five-fold dilution) of the combined three ARD streams entering the Toby Creek Plant. This side-stream capability provides savings in treatment unit scale as well as flexibility in treatment effect. The capability of the system to handle higher influent acidity was tested by elevating the acidity to 5000 mg/L with sulfuric acid. Net alkaline effluent was produced, indicating applicability of the process to highly acidic ARD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) ARD remediation with limestone in a CO2 pressurized reactor; Isip:000169875500098; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17100 Serial 169
Permanent link to this record
 

 
Author Bernoth, L.; Firth, I.; McAllister, P.; Rhodes, S.
Title Biotechnologies for Remediation and Pollution Control in the Mining Industry Type Journal Article
Year 2000 Publication Miner. Metall. Process. Abbreviated Journal
Volume 17 Issue 2 Pages 105-111
Keywords bioremediation pollution control soil contamination solvents oils diesel hydrocarbons cyanide acid rock drainage microbial mats manganese bioremediation oxidation drainage removal water algae
Abstract As biotechnologies emerge from laboratories into main-stream application, the benefits they, offer are judged against competing technologies and business criteria. Bioremediation technologies have passed this test and are now widely used for the remediation of contaminated soils and ground waters. Bioremediation includes several distinct techniques that are used for the treatment of excavated soil and includes other techniques that are used for in situ applications. They play an important and growingrole in the mining industry for cost-effective waste management and site remediation. Most applications have been for petroleum contaminants, but advances continue to be made in the treatment of more difficult organ ic and inorganic species. This paper discusses the role of biotechnologies in remediation and pollution control from a mining-industry perspective. Several case studies are presented, including the land application of oily wastewater from maintenance workshops, the composting of hydrocarbon-contaminated soils and sludges, the bioventing of hydrocarbon solvents, the intrinsic bioremediation of diesel hydrocarbons, the biotreatment of cyanide in water front a gold mine, and the removal of manganese from acidic mine drainage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0747-9182 ISBN Medium
Area Expedition Conference
Notes (up) Biotechnologies for Remediation and Pollution Control in the Mining Industry; Isi:000087094600005; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17307 Serial 450
Permanent link to this record