|   | 
Details
   web
Records
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes (up) Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Smith, I.J.H.
Title AMD treatment, it works but are we using the right equipment? Type Journal Article
Year 2000 Publication Tailings and mine waste ' Abbreviated Journal
Volume Issue Pages 419-427
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management
Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).
Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no
Call Number CBU @ c.wolke @ 17541 Serial 237
Permanent link to this record
 

 
Author Bennett, J.W.; Timms, G.P.; Ritchie, A.I.M.
Title The effectiveness of the covers on waste rock dumps at Rum Jungle and the impact in the long term Type Journal Article
Year 1999 Publication Mining into the next century : environmental opportunities and challenges Proceedings of the 24th annual environmental workshop Townsville October Abbreviated Journal
Volume Issue Pages 379-388
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage containment barrier mine drainage mine waste
Abstract Covers are widely used as a means of controlling pollutant generation from sulfidic waste piles. To date, there has been little data available to test the effectiveness of such covers. Monitoring of two waste rock dumps at Rum Jungle over more than fifteen years has provided the opportunity to assess cover effectiveness in the medium term. For the first 9 years the infiltration rate through the cover on Whites dump was less than the design figure of 5 per cent of rainfall. In subsequent years, however, the rate has increased to between 5 and 10 per cent. In the first six years the infiltration rate through the cover on Intermediate dump was also less than 5 per cent. Unfortunately, further measurements had to be abandoned due to equipment malfunction in this dump. Oxygen and temperature profiles measured below the cover have been used to estimate the overall oxidation rate in the two dumps. This is between 30 and 50 per cent of the oxidation rate prior to installation of the cover. The effect these results have on pollutant loads in drainage in the long term depends on the nature of the control mechanisms in the system. If pollutant concentrations in drainage are determined by secondary mineralisation within the dumps then pollutant loads in the long term will be essentially proportional to any further increase in the infiltration rate. If the pollutant loads in drainage are largely determined by the overall oxidation rates then we can expect the pollutant loads from the two dumps to increase in the long term to a level about one third to one half of that prior to rehabilitation. In this context, 'long term' means about 40 years after installation of the cover system. Given the implications this work has for the use of soil covers, the following additional studies should be undertaken: A measurement program to quantify the pollution loads from Intermediate and Whites waste rock dumps. A program of computation, backed by acquisition of mineralogical data on the wastes, to address the question of controls on concentration and load in effluent from the two dumps. A program to determine the reason for the deteriorating performance of the covers at Rum Jungle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Book; Conference-Paper; The effectiveness of the covers on waste rock dumps at Rum Jungle and the impact in the long term; 2241668; Using Smart Source Parsing 1999 Australia; Geobase Approved no
Call Number CBU @ c.wolke @ 17545 Serial 453
Permanent link to this record
 

 
Author Beck, P.
Title CL:AIRE – Providing support for remediation research Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 99-104
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) contaminated land remediation guideline acid mine drainage hydrochemistry
Abstract CL:AIRE (Contaminated Land: Applications in Real Environments) is a public-private partnership which was established in 1999 to encourage the demonstration of remediation research and technologies on contaminated sites throughout the UK. Project proposals are submitted to CL:AIRE and reviewed and approved by the CL:AIRE Technology & Research Group. CL:AIRE provides independent verification of its projects and plays a crucial role in the dissemination of project information. During the course of the project, progress is reported through the newsletter, CL:AIRE view, which is mailed free of charge to a database of more than 4500 stakeholders with an interest in contaminated land. Progress is also tracked on the CL:AIRE website at www.claire.co.uk. On completion of the project, a project report is published and a one page summary fact sheet is prepared. The fact sheet is distributed to our database subscribers and posted on the website. The project is also presented at the CL:AIRE Annual Project Conference. In addition, aspects of the research which have practical application will be published as CL:AIRE Research Bulletins. Acid mine waters discharging from abandoned mines represent a significant environmental problem in many parts of the UK. Considerable research has been carried out to understand the geochemical process involved, and the knowledge has been used to manage groundwater discharge through physical/chemical treatment and constructed wetlands. CL:AIRE supports the development of a national site for wetland research managed by the University of Newcastle and will encourage collaborative research projects to be submitted through CL:AIRE. CL:AIRE is currently supporting two projects which demonstrate remediation of acid mine drainage and is disseminating the results of this and other research to improve confidence in the use of these techniques.
Address P. Beck, CL:AIRE, 1 Great Cumberland Place, London W1H 7AL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes (up) CL:AIRE – Providing support for remediation research; 2530414; United-Kingdom 2; Geobase Approved no
Call Number CBU @ c.wolke @ 17524 Serial 461
Permanent link to this record
 

 
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 497-509
Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor
Language Summary Language Original Title
Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no
Call Number CBU @ c.wolke @ 6210 Serial 330
Permanent link to this record