|   | 
Details
   web
Records
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L.
Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal
Volume Issue Pages 579-584
Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology
Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 16526 Serial 290
Permanent link to this record
 

 
Author Demin, O.A.; Dudeney, A.W.L.; Tarasova, I.I.
Title Remediation of Ammonia-rich Minewater in Constructed Wetlands Type Journal Article
Year 2002 Publication Environ. Technol. Abbreviated Journal
Volume 23 Issue 5 Pages 497-514
Keywords constructed wetlands reed beds ammonia removal nitrification woolley colliery horizontal subsurface flow nitrate removal waste-water denitrification nitrification
Abstract A three-year study of ammonia removal from minewater was carried out employing constructed wetland systems (surface flow wetland and subsurface flow wetland cells) at the former Woolley Mine in West Yorkshire, UK The 1.4 Ha surface flow wetland (constructed in 1995) reduced the ammonia concentration from 3.5 – 4.5 mg l(-1) to < 2 3 mg V during the first half of the study and to essentially zero in the last year (2000 – 2001). About 25 % of contained ammonia was converted to nitrate, about 10 % was consumed by the plants and up to 30 % was converted to nitrogen gas. This maturation effect was attributed to increased depth of sludge from sedimentation of ochre, providing increased surface area for immobilisation of ammonia oxidising bacteria. The surface flow wetland finally removed 23 g m(-2) day(-1) ammonia in comparison with 3.8 g m(-2) day' for the subsurface flow (pea gravel) wetland cells, constructed for the present work and dosed with ammonium salts. Removal of ammonia by both systems was consistent with well-established mechanisms of nitrification and denitrification. It was also consistent with ammonia removal in wastewater wetland systems, although the greater aeration in the minewater systems obviated the need for special aeration cycles. The general role of wetland plants in such aerated conditions was attributed to maintaining hydraulic conditions (such as hydraulic efficiency and hydraulic resistance of substratum in subsurface flow systems) in the wetlands and providing a suspended solids filter for minewater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Medium
Area Expedition Conference
Notes (up) Remediation of Ammonia-rich Minewater in Constructed Wetlands; Isi:000176238900002; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17328 Serial 405
Permanent link to this record
 

 
Author Anonymous
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 118 pp
Keywords abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Society for Mining, Metallurgy, and Exploration Place of Publication Littleton Editor
Language Summary Language Original Title
Series Editor Series Title Remediation of historical mine sites; technical summaries and bibliography Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0873351622 Medium
Area Expedition Conference
Notes (up) Remediation of historical mine sites; technical summaries and bibliography; 1998-031431; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6164 Serial 11
Permanent link to this record
 

 
Author Gusek, J.J.
Title Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages 1-14 [Cd-Rom]
Keywords Constructed wetlands acid mine drainage heavy metals sulfate reduction
Abstract There are basically two kinds of biological passive treatment cells for treating mine drainage. Aerobic Cells, containing cattails and other plants, are typically applicable to coal mine drainage where iron and manganese and mild acidity are problematic. Anaerobic Cells or Sulfate-Reducing Bioreactors are typically applicable to metal mine drainage with high acidity and a wide range of metals. Most passive treatment systems employ one or both of these cell types. The track record of aerobic cells in treating coal mine drainage is impressive, especially in the eastern coalfields. Sulfate-reducing bioreactors have tremendous potential at metal mines and coal mines, but have not seen as wide an application. This paper presents the advantages of sulfate-reducing bioreactors in treating mine drainage, including: the ability to work in cold, high altitude environments, handle high flow rates of mildly affected ARD in moderate acreage footprints, treat low pH acid drainage with a wide range of metals and anions including uranium, selenium, and sulfate, accept acid drainagecontaining dissolved aluminum without clogging with hydroxide sludge, have life-cycle costs on the order of $0.50 per thousand gallons, and be integrated into “semi-passive” systems that might be powered by liquid organic wastes. Sulfate reducing bioreactors might not be applicable in every abandoned mine situation. However a phased design program of laboratory, bench, and pilot scale testing has been shown to increase the likelihood of a successful design.
Address
Corporate Author Thesis
Publisher Place of Publication Park City Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, Annual Conference – National Association of Abandoned Mine Land Programs Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Sulfate-Reducing Bioreactor Design and Operating Issues – Is this the Passive Treatment Technology for your Mine Drainage?; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb. Approved no
Call Number CBU @ c.wolke @ 17348 Serial 364
Permanent link to this record
 

 
Author Younger, P.L.
Title The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom Type Journal Article
Year 2000 Publication Mine Water Env. Abbreviated Journal
Volume 19 Issue 2 Pages 84-97
Keywords wetlands SAPS aerobic wetlands acidity aerobic anaerobic compost iron metals passive reactive barrier water treatment
Abstract During the 1990s, passive treatment technology was introduced to the United Kingdom (UK). Early hesitancy on the part of regulators and practitioners was rapidly overcome, at least for net-alkaline mine waters, so that passive treatment is now the technology of choice for the long-term remediation of such discharges, wherever land availability is not unduly limiting. Six types of passive systems are now being used in the UK for mine water treatment: ¨ aerobic, surface flow wetlands (reed-beds); ¨ anaerobic, compost wetlands with significant surface flow; ¨ mixed compost / limestone systems, with predominantly subsurface flow (so-called Reducing and Alkalinity Producing Systems (RAPS)); ¨ subsurface reactive barriers to treat acidic, metalliferous ground waters; ¨ closed-system limestone dissolution systems for zinc removal from alkaline waters; ¨ roughing filters for treating ferruginous mine waters where land availability is limited. Each of these technologies is appropriate for a different kind of mine water, or for specific hydraulic circumstances. The degree to which each type of system can be considered “proven technology” corresponds to the order in which they are listed above. Many of these passive systems have become foci for detailed scientific research, as part of a $1.5M European Commission project running from 2000 to 2003.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes (up) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom; 1; FG 5 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17448 Serial 198
Permanent link to this record