toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Canty, G.A.; Everett, J.W. openurl 
  Title Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue 1 Pages 45-55  
  Keywords acid mine drainage AMD alkaline injection technology fluidized bed combustion ash Oklahoma  
  Abstract A demonstration project was conducted to investigate treating acid mine water by alkaline injection technology (AIT). A total of 379 t of alkaline coal combustion byproduct was injected into in an eastern Oklahoma drift coal mine. AIT increased the pH and alkalinity, and reduced acidity and metal loading. Although large improvements in water quality were only observed for 15 months before the effluent water chemistry appeared to approach pre-injection conditions, a review of the data four years after injection identified statistically significant changes in the mine discharge compared to pre-injection conditions. Decreases in acidity (23%), iron (18%), and aluminium (47%) were observed, while an increase in pH (0.35 units) was noted. Presumably, the mine environment reached quasi-equilibrium with the alkalinity introduced to the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage; 1; FG 6 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17319 Serial 422  
Permanent link to this record
 

 
Author Sibrell, P.L. url  openurl
  Title Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA Type Journal Article
  Year 2006 Publication Aquacultural Engineering Abbreviated Journal  
  Volume 34 Issue 2 Pages 61-71  
  Keywords mine water treatment  
  Abstract Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species Such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and Survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 X P(CO2)(1/2); R-2 = 0.975. No significant acidic incursions were noted for the control water over the course of the Study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. (C) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA; Wos:000235568800001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16942 Serial 113  
Permanent link to this record
 

 
Author Bamforth, S.M. url  openurl
  Title Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 8 Pages 1274-1287  
  Keywords mine water treatment  
  Abstract Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate may not be necessary for successful Mn precipitation. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates; Wos:000240297600004; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16916 Serial 107  
Permanent link to this record
 

 
Author Agency, U.S.E.P.; Development, O. of R. and url  openurl
  Title Active and semi-passive lime treatment of acid mine drainage at Leviathan Mine, California Type RPT
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages 94  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Place of Publication Cincinnati, OH Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Mar; Active and semi-passive lime treatment of acid mine drainage at Leviathan Mine, California; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7171.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7171 Serial 62  
Permanent link to this record
 

 
Author Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W. url  openurl
  Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
  Year 2006 Publication Water Res Abbreviated Journal  
  Volume 40 Issue 9 Pages 1816-1826  
  Keywords mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment  
  Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes (up) May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10040 Serial 49  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: