|   | 
Details
   web
Records
Author Frisch, K.-R.
Title Type Book Whole
Year 2000 Publication Abbreviated Journal
Volume Issue Pages 258 pp
Keywords Grubenwasser Gewässerversauerung Versatz <Bergbau> Neutralisation <Chemie> Umweltbilanz
Abstract
Address
Corporate Author Thesis
Publisher Clausthal-Zellerfeld: Papierflieger Place of Publication Clausthal-Zellerfeld Editor
Language Summary Language Original Title
Series Editor Series Title Die Verringerung der Sauerwasserbildung im untertägigen Bergbau durch Versatz Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-89720-397-9 Medium
Area Expedition Conference
Notes (up) Die Verringerung der Sauerwasserbildung im untertägigen Bergbau durch Versatz; Clausthal-Zellerfeld: Papierflieger; Clausthal, Techn. Univ., Diss.; Opac Approved no
Call Number CBU @ c.wolke @ 6939 Serial 373
Permanent link to this record
 

 
Author Fischer, R.; Reissig, H.; Gockel, G.; Seidel, K.H.; Guderitz, T.
Title Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI Type Journal Article
Year 1998 Publication Braunkohle, Surface Mining Abbreviated Journal
Volume 50 Issue 3 Pages 273-278
Keywords chemical reactions; mathematical methods; methods; mine drainage; mining; pH; remediation; reservoirs; surface mining 22 Environmental geology; 02B Hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-2719 ISBN Medium
Area Expedition Conference
Notes (up) Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI; 253811-4; illus. Federal Republic of Germany (DEU); GeoRef In Process; German Approved no
Call Number CBU @ c.wolke @ 6219 Serial 378
Permanent link to this record
 

 
Author Zinck, J.
Title Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages 2604-2617
Keywords mine water lime treatment high density sludge process co-disposal sludge stability pond disposal backfill leaching mine reclamation
Abstract Sludge management is an escalating concern as the inventory of sludge continues to grow through perpetual “pump and treat” of acidic waters at mine sites. Current sludge management practices, in general, are ad hoc and frequently do not adress long-term storage, and in some cases, long-term stability. While a variety of sludge disposal practices have been applied, many have not been fully investigated and monitoring data on the performance of these technologies is limited and not readily available. This paper discusses options for treatment sludge management including conventionale disposal technologies and options for reclamation of sludge areas.
Address
Corporate Author Thesis
Publisher Proceedings, International Conference of Acid Rock Drainage (ICARD) Place of Publication St. Louis Editor
Language Summary Language Original Title
Series Editor Series Title Icard 2006 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Disposal, reprocessing and reuse options for acidic drainage treatment sludge; 2; AMD ISI | Wolkersdorfer; 2 Abb. Approved no
Call Number CBU @ c.wolke @ 17455 Serial 184
Permanent link to this record
 

 
Author Rodiek, J.; Verma, T.R.; Thames, J.L.
Title Disturbed land rehabilitation in Lynx Creek watershed Type Journal Article
Year 1975 Publication Landscape and Planning Abbreviated Journal
Volume 2 Issue Pages 265-282
Keywords
Abstract Rodiek, J., Verma, T.R. and Thames, J.L., 1976. Disturbed land rehabilitation in Lynx Creek Watershed. Landscape Plann., 2: 265-282. The Lynx Creek Watershed is located on the Prescott National Forest about 8 km south of Prescott, Arizona. The watershed, with an area of 7304 ha, has experienced intensive copper and gold mining activities in the past. Approximately 13% of the area still consists of patented mining claims (mainly copper). There are numerous abandoned mine shafts, waste dumps and mine tailings in the area. Past mining activities in the watershed have caused significant deterioration in water quality within and downstream from the mining sites. Mine drainage includes water flowing from mine shafts, surface runoff and seepage from mining dumps. Drainage from the numerous old mining sites contributes to the toxic mineral and sediment pollution of the water resources in the area. The pollutants in the form of dissolved, suspended or other solid mineral wastes and debris, enter in the streams of ground water. Aquatic life and recreation potential of the watershed is greatly reduced by the water pollution problem from the abandoned mines. The pollutants from the abandoned mines enter into Lynx Lake which is located 10 km southeast of Prescott. Lynx Lake, a trout fisheries lake, was created by a dam built in 1963 by the Arizona Game and Fish Department. The lake is 22 surface hectares in size with the storage capacity of 1.85 x 106 m3. The average yearly flow of sediment into the lake is 2900 m3. The sediment is slightly acidic and has a high concentration of copper, manganese, iron, zinc, and sulfates. The Sheldon dump and tailings pond are considered two major sources of pollution. Increasing need to direct additional attention toward mineral related problems made it necessary to coordinate U.S. Forest Service efforts with others involved in mining and reclamation. The Forest Service started SEAM (Surface Environment And Mining) in 1972 to coordinate interagency reclamation efforts. The Sheldon Mine dump and tailings pond were undertaken as a reclamation project through the coordinated efforts of the Forest Service, and the School of Renewable Natural Resources, University of Arizona at Tucson. The project is aimed at reclaiming some of the abandoned spoils in the Lynx Creek watershed and monitoring of water quality in the creek to evaluate the effectiveness of reclamation procedures. The reclamation approach includes recontouring, revegetating, drainage control and visual impact modification activities. The results to date have been encouraging. There was an excellent vegetation cover established within 5 weeks of seeding. Runoff and sediment control on the regraded slopes seemed quite effective. The methodology and technological experience gained from the reclamation project will provide invaluable information for reclaiming any abandoned mining sites within the Ponderosa Pine Ecosystem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Disturbed land rehabilitation in Lynx Creek watershed; Science Direct Approved no
Call Number CBU @ c.wolke @ 17284 Serial 35
Permanent link to this record
 

 
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record