|   | 
Details
   web
Records
Author Al-Abed, S.; Allen, D.; Bates, E.; Reisman, D.
Title Lime treatment lagoons technology for treating acid mine drainage from two mining sites Type Journal Article
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; case studies; Copper Mine; drainage; geochemistry; heavy metals; hydrochemistry; Leviathan Mine; mining; Nevada; pH; pollutants; pollution; precipitation; remediation; runoff; surface water; Tennessee; United States; waste lagoons; water treatment 22 Environmental geology; 02B Hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Hardrock mining 2002; issues shaping the industry Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) 2007-046170; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5621 Serial 487
Permanent link to this record
 

 
Author Hause, D.R.; Willison, L.R.
Title Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage Type Journal Article
Year 1986 Publication Abbreviated Journal
Volume Issue Pages
Keywords in situ treatment sealing phosphate rock dust mine water acid mine water treatment beach area
Abstract Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 7th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) 2; als Datei vorhanden 13 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17350 Serial 359
Permanent link to this record
 

 
Author Houston, K.S.; Milionis, P.N.; Eppley, R.L.; Harrington, J.M.; Harrington, J.G.
Title Field Demonstration of In-Situ Treatment and Prevention of Acid Mine Drainage in the Abandoned Tide Mine, Indiana County, Pennsylvania Type Journal Article
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords in situ ferrous sulfide precipitation sulfate reduction coal bromide tracer Tide Mine Center Township PA tracer study
Abstract A field demonstration of the Green World Science® patented process technology was performed to address acid mine drainage (AMD) at an abandoned bituminous coal mine, the Tide Mine in Center Township, Indiana County, PA. ARCADIS owns an exclusive patent license of the Green World Science® process, which can be used in situ to transform an aerobic, AMD-producing mine pool to a biologically mediated, sulfate-reducing state. The Green World Science® process treats the entire mine pool to address the source of AMD in place. The project was conducted through a grant agreement between the Blacklick Creek Watershed Association, the Pennsylvania Department of Environmental Protection's Bureau of Abandoned Mine Reclamation, and ARCADIS. In conjunction with the characterization of mine pool hydraulics through injection of a bromide tracer, the in situ treatments implemented at Tide Mine include the initial addition of alkalinity to create an environment suitable for biological activity, injection of organic carbon into the mine pool to facilitate microbially mediated metals reduction and precipitation, and injection of carbon dioxide gas into the atmosphere above the mine pool to control the dominant source of oxygen that perpetuates the AMD process. Collectively, these treatments raised the pH from a baseline of approximately 2.5 to over 6 during the demonstration period. The mine pool subsequently maintains a pH above 5 through microbially produced (i.e., bicarbonate) alkalinity. Ferric iron has been reduced to non-detect concentrations within the anaerobic mine pool, and aluminum concentrations have decreased by approximately 30%, with additional metals removal expected as the system becomes controlled by ferrous sulfide precipitation. The injection of carbon dioxide gas into the mine workings decreased oxygen concentrations above the mine pool from over 20% (ambient air conditions) to less than 5% over approximately three months, thus mitigating the source of AMD within the mine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 26th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) 2; als Datei vorhanden 6 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17355 Serial 347
Permanent link to this record
 

 
Author Bilek, F.; Werner, F.; Schöpke, R.
Title Experimentelle und modellgestützte Entwicklung von Verfahren zur geochemischen Grundwasser- und Untergrundbehandlung zur Gefahrenabwehr im Nordraum des Senftenberger Sees Type Journal Article
Year 2003 Publication Abbreviated Journal
Volume Issue Pages 544
Keywords Senftenberger See Bergbaurestsee Sulfidbelastung Grundwasserüberwachung
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) ; Experimentelle und modellgestützte Entwicklung von Verfahren zur geochemischen Grundwasser- und Untergrundbehandlung zur Gefahrenabwehr im Nordraum des Senftenberger Sees; Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft <Berlin>; Technische Universität <Cottbus>; Grundwasserforschungsinstitut <Dresden>; Erschienen: Cottbus [u.a.]; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/6945.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 6945 Serial 78
Permanent link to this record
 

 
Author Macklin, M.G.
Title A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
Year 2006 Publication Geomorphology Abbreviated Journal
Volume 79 Issue 3-4 Pages 423-447
Keywords mine water treatment
Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16934 Serial 105
Permanent link to this record