toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Earley, D., III; Schmidt, R.D.; Kim, K. openurl 
  Title Is sustainable mining an oxymoron? Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acids data processing development ground water leaching mineral resources mining mining geology models monitoring pollution production solutions 26A Economic geology, general, deposits 22 Environmental geology  
  Abstract Sustainable mining is generally considered to be an oxymoron because mineral deposits are viewed as nonrenewable resources that are fixed in the crust. However, minerals are conserved and recycled by plate tectonics which continually creates and destroys ore deposits. Though it is true that rock cycles have much longer periods than biomass cycles, the crust is essentially an infinite reservoir so long as we continue to invest in mineral exploration and processing technology. Implicit in the definition of sustainable development is the recognition that human development of resources in one reservoir may subsequently degrade resources supplied by another. The depreciation of overlapping and adjacent resources is often externalized in the cost to benefit accounting and cannot be sustained if the integrated cost/benefit ratio is greater than 1. The greatest obstacle to sustainability in mining is the expanding scale of excavation required to develop leaner ores because this activity degrades connected resources. In the case of open pit, sulfide ore mining the disturbed land may produce acid rock drainage (ARD). Because ARD will self-generate over the course of tens to hundreds of years the cost of controlling this pollution and rehabilitating mined lands is large and often spread over many generations. Secondary production of minerals from partially excavated deposits where there are preexisting environmental impacts and mine infrastructure help to reduce the risk of depreciating pristine resources, provided that new mining operations “do no (additional) harm” (Margoles, 1996). In turn, a percentage of the profits derived from secondary mineral production can be used for rehabilitation of the previously mined lands. These lands contain significant, albeit low grade, metal concentrations. These concepts are being developed and tested at the Mineral Park Sustainable Mining Research Facility where an in situ copper sulfide mining field experiment was conducted. Monitoring data and computer modeling indicate that ARD is not generated after closure. This is because the ore is not disturbed and is left saturated, whereas unsaturated conditions generate acidic drainage. The short term risk of groundwater contamination is mitigated by utilizing an exempt mine pit to capture any leach solutions that are not intercepted by the wellfield. Using green accounting techniques and transfer models it can be communicated that this mining scenario is an approach to sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Geological Society of America, 1997 annual meeting Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 1998-051450; Geological Society of America, 1997 annual meeting, Salt Lake City, UT, United States, Oct. 20-23, 1997; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16638 Serial 396  
Permanent link to this record
 

 
Author Bliss, L.N.; Sellstone, C.M.; Nicholson, A.D.; Kempton, J.H. openurl 
  Title Buffering of acid rock drainage by silicate minerals Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; buffers; chemical reactions; decontamination; environmental analysis; geochemistry; pH; pollution; remediation; silicates; sulfate ion; USGS 22 Environmental geology; 02A General geochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Open-File Report - U. S. Geological Survey, Report: OF 97-0496 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 4th International symposium on Environmental geochemistry; proceedings Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 1998-068723; 4th International symposium on Environmental geochemistry, Vail, CO, United States, Oct. 5-10, 1997 U. S. Geol. Surv., Denver, CO, United States; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6286 Serial 446  
Permanent link to this record
 

 
Author Bowell, R.J.; Connelly, R.J.; Ellis, J.; Cowan, J.; Wood, A.; Barta, J.; Edwards, P. openurl 
  Title A review of sulfate removal options from mine waters Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; bacteria; bioremediation; decontamination; effluents; ground water; legislation; osmosis; oxidation; pollutants; pollution; remediation; reverse osmosis; selenites; sulfate ion; toxic materials; USGS; water treatment 22 Environmental geology; 02A General geochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Open-File Report - U. S. Geological Survey, Report: OF 97-0496 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 4th International symposium on Environmental geochemistry; proceedings Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 1998-068727; 4th International symposium on Environmental geochemistry, Vail, CO, United States, Oct. 5-10, 1997 U. S. Geol. Surv., Denver, CO, United States; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6287 Serial 438  
Permanent link to this record
 

 
Author Noss, R.R.; Crago, R.W.; Gable, J.; Kerber, B.; Mafi, S. openurl 
  Title Use of flue gas desulfurization sludge in abandoned mine land reclamation Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines; acid mine drainage; flue gas desulfurization sludge; land management; land use; liquid waste; mines; mining; mining geology; moisture; pH; pollution; reclamation; remediation; soils; strip mining; surface mining; waste disposal 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Ohio Journal of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Ohio Academy of Science 106th annual meeting; progress toward water quality in the Lake Erie basin; abstracts Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 1999-043696; Ohio Academy of Science 106th annual meeting, Bowling Green, OH, United States, April 4-6, 1997; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6302 Serial 282  
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D. url  openurl
  Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
  Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal  
  Volume Issue Pages 1545  
  Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology  
  Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.  
  Address  
  Corporate Author Thesis  
  Publisher AAPG Bulletin Place of Publication 81 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no  
  Call Number CBU @ c.wolke @ 16630 Serial 70  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: