|   | 
Details
   web
Records
Author
Title 'Green' company offers desalination technology Type Journal Article
Year 1998 Publication Water Sewage and Effluent Abbreviated Journal
Volume 18 Issue 4 Pages 9-11
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage environmental effect mine drainage
Abstract Water and wastewater treatment activities, projects and capabilities of South African environmental engineering specialist Envig are detailed. The company, as part of the Weir Wesgarth Consortium, has pre-qualified for the major Namibian Water Supply Project, one of the largest of its kind to date in southern Africa. This project involves the desalination of seawater to meet increasing water demand and shortfalls. Envig, if awarded the contract, would be involved in construction of three or four reverse osmosis or mechanical vapour compression sea water desalination plants and associated infrastructure. The company is also involved in a mine water desalination project at the Eskom Tutuka Power Station. A reverse osmosis plant using low fouling maintenance is being installed to deal with acid mine drainage water. Details of the design and operation of this plant are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8700 ISBN Medium
Area Expedition Conference
Notes (up) 'Green' company offers desalination technology; 0432290; South-Africa; Geobase Approved no
Call Number CBU @ c.wolke @ 17548 Serial 496
Permanent link to this record
 

 
Author Banks, S.B.; Banks, D.
Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal
Volume Issue Pages 31-37
Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology
Abstract The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.
Address
Corporate Author Thesis
Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16515 Serial 31
Permanent link to this record
 

 
Author Kuyucak, N.
Title Acid mine drainage prevention and control options Type Journal Article
Year 2002 Publication CIM Bull. Abbreviated Journal
Volume 95 Issue 1060 Pages 96-102
Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management
Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.
Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes (up) Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17532 Serial 64
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes (up) Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Fisher, T.S.R.; Lawrence, G.A.
Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
Year 2006 Publication Journal of environmental engineering Abbreviated Journal
Volume 132 Issue 4 Pages 515-526
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America
Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.
Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-9372 ISBN Medium
Area Expedition Conference
Notes (up) Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17494 Serial 72
Permanent link to this record