|   | 
Details
   web
Records
Author Noss, R.R.; Crago, R.W.; Gable, J.; Kerber, B.; Mafi, S.
Title Use of flue gas desulfurization sludge in abandoned mine land reclamation Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords abandoned mines; acid mine drainage; flue gas desulfurization sludge; land management; land use; liquid waste; mines; mining; mining geology; moisture; pH; pollution; reclamation; remediation; soils; strip mining; surface mining; waste disposal 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Ohio Journal of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Ohio Academy of Science 106th annual meeting; progress toward water quality in the Lake Erie basin; abstracts Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) 1999-043696; Ohio Academy of Science 106th annual meeting, Bowling Green, OH, United States, April 4-6, 1997; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6302 Serial 282
Permanent link to this record
 

 
Author Becker, G.; Wade, S.; Riggins, J.D.; Cullen, T.B.; Venn, C.; Hallen, C.P.
Title Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania Type Journal Article
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords abandoned mines acid mine drainage anthracite Ashland Pennsylvania Bast Mine Big Mine Run coal coal fields coal mines Columbia County Pennsylvania discharge geochemistry hydrochemistry hydrology Mahanoy Creek mines Northumberland County Pennsylvania Pennsylvania pollution rivers and streams Schuylkill County Pennsylvania sedimentary rocks surface water United States water quality water treatment Western Middle Anthracite Field 22 Environmental geology 02A General geochemistry
Abstract The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, Northeastern Section, 40th annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) 2006-042616; Geological Society of America, Northeastern Section, 40th annual meeting, Saratoga Springs, NY, United States, March 14-16, 2005; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16455 Serial 459
Permanent link to this record
 

 
Author Banks, S.B.; Banks, D.
Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal
Volume Issue Pages 31-37
Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology
Abstract The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.
Address
Corporate Author Thesis
Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16515 Serial 31
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Brant, D.L.; Sterner, P.L.; Lovett, R.J.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Acid mine drainage treatment with armored limestone in open limestone channels Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords abandoned mines; acid mine drainage; acidification; carbonate rocks; case studies; chemical reactions; coal mines; controls; decontamination; effluents; environmental management; experimental studies; ground water; heavy metals; hydrology; limestone; mines; Pennsylvania; pollution; reclamation; sedimentary rocks; soils; surface water; United States; water treatment; watersheds; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Acid mine drainage treatment with armored limestone in open limestone channels; GeoRef; English; 2004-051155; Edition: 2 References: 14; illus. incl. 6 tables Approved no
Call Number CBU @ c.wolke @ 6365 Serial 189
Permanent link to this record
 

 
Author Kleinmann, R.L.P.
Title Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
Year 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages 269-276
Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum
Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-6960 ISBN Medium
Area Expedition Conference
Notes (up) Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17368 Serial 328
Permanent link to this record