toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heal, K.V.; Salt, C.A. url  openurl
  Title Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil Type Journal Article
  Year 1999 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 39 Issue 12 Pages 141-148  
  Keywords Acid mine drainage constructed wetland mine waste reclamation sewage sludge  
  Abstract Ironstone mine spoil leaves a legacy of land contamination and diffuse water pollution with acidic, metal-rich drainage. Reclamation for woodland may exacerbate water pollution due to spoil amendment and disturbance. Constructed wetland systems (CWS) are increasingly used for treating acid mine drainage but their performance is poorly understood. A combined approach was used to reclaim the Benhar ironstone spoil heap in Central Scotland. Trees have been planted in spoil treated with dried pelleted sewage sludge, limestone and peat. Spoil drainage (pH 2.7, 247 mg l-1 total Fe) passes through a CWS. Spoil throughflow, surface water chemistry and CWS performance were monitored for 12 months after reclamation. Acidity, Fe, Mn and Al concentrations declined in throughflow after reclamation, although this effect was not uniform. Soluble reactive P has been mobilised from the sewage sludge in residual areas of spoil acidity, but losses of other nutrients were short-lived. The CWS removes on average 33 % and 20-40 % of acidity and metal inputs but removal rates decrease in winter. Spoil reclamation has been successful in enabling vegetation establishment but has also increased Fe and Mn concentrations in surface drainage from the site, even after passage through the CWS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17272 Serial 45  
Permanent link to this record
 

 
Author Oleary, W. url  openurl
  Title Wastewater recycling and environmental constraints at a base metal mine and process facilities Type Journal Article
  Year 1996 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 33 Issue 10-11 Pages 371-379  
  Keywords mine water treatment  
  Abstract In temperate areas of abundant freshwater there is seldom an urgency to recycle. The statutory protection of inland waters for beneficial uses such as drinking, food processing and game fishing is requiring industries to choose recycling. A European success in this trend is a base metal mining/milling industry which, since 1977, is implementing hydraulic, hydrological, treatment and ecological studies with wastewaters and mine tailings. A model activity, located 50 km from Dublin is considered. Zinc and lead concentrates produced and exported to smelters ultimately yield approximately 194,000 t and 54,000 t of these respective metals (32 and 21 percent of European production). Water use as originally planned would have been approximately 6m(3)/t of ore milled. While ore milling increased by 25 percent to 8,500t/d in 1993, water use declined by 33 percent to 4m(3)/t. The components making up this reduction range from milling technology efficiency to greater recycling from the 165 ha tailings pond. Environmental standards, based on framework regulations originating in EU Directives, have been instrumental in achieving wastewater savings. A conclusion is the value of integrating water quantity, quality, recycling, storage, production and other factors early in project planning. Copyright (C) 1996 IAWQ. Published by Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Wastewater recycling and environmental constraints at a base metal mine and process facilities; Wos:A1996vb13300041; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17170 Serial 84  
Permanent link to this record
 

 
Author Bosman, D.J. url  openurl
  Title Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation Type Journal Article
  Year 1983 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 15 Issue 2 Pages 71-84  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation; Wos:A1983qg97300005; Times Cited: 7; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 14794 Serial 95  
Permanent link to this record
 

 
Author Sierra-Alvarez, R. url  openurl
  Title Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors Type Journal Article
  Year 2006 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 54 Issue 2 Pages 179-185  
  Keywords mine water treatment  
  Abstract The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed V with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 Mg Cu2+vertical bar(-1); 10 mg Ni2+vertical bar(-1), 10 mg Zn2+vertical bar(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation Cn rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors; Wos:000240449300024; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16943 Serial 106  
Permanent link to this record
 

 
Author Maree, J.P.; Du Plessis, P. openurl 
  Title Neutralization of acid mine water with calcium carbonate Type Journal Article
  Year 1981 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 29 Issue 9 Pages 285  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Neutralization of acid mine water with calcium carbonate; Oxford; New York: Pergamon Press; Opac Approved no  
  Call Number CBU @ c.wolke @ 7221 Serial 310  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: