|   | 
Details
   web
Records
Author McLeod, K.W.; Ciravolo, T.G.
Title Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions Type Journal Article
Year 2003 Publication Environmental Toxicology and Chemistry Abbreviated Journal
Volume 22 Issue 12 Pages 2948-2951
Keywords Heavy metals ecological abstracts: pollution (73 7 3) seedling saturated medium biomass manganese sensitivity analysis bioaccumulation Nyssa aquatica Taxodium distichum
Abstract In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 < mu >g/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.
Address K.W. McLeod, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, United States mcleod@srel.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-7268 ISBN Medium
Area Expedition Conference
Notes Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions; 2574798; United-States 15; Geobase Approved no
Call Number CBU @ c.wolke @ 16010 Serial 302
Permanent link to this record
 

 
Author Hellier, W.W.; Giovannitti, E.F.; Slack, P.T.
Title Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 60-69
Keywords acid mine drainage; coal mines; geochemistry; ground water; iron; manganese; metals; mines; mining; mining geology; open-pit mining; pH; pollution; reclamation; remediation; seepage; surface mining; tailings; waste disposal; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps; GeoRef; English; 2007-045158; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 9; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6568 Serial 353
Permanent link to this record
 

 
Author Diz, H.R.
Title Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity Type Book Whole
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; copper; effluents; ferrous iron; heavy metals; iron; manganese; metals; nickel; oxidation; pH; pollution; precipitation; rates; tailings; temperature; waste water; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6316 Serial 400
Permanent link to this record
 

 
Author Brooks, R.P.; Unz, R.F.; Davis, L.K.; Tarutis, W.J.; Yanchunas, J.
Title Long-term removal and retention of iron and manganese from acidic mine drainage by wetlands Type Journal Article
Year 1990 Publication Abbreviated Journal
Volume Issue Pages 147
Keywords Acid mine drainage Wetlands Biological treatment Iron removal Manganese removal
Abstract A promising low-technology solution for treating acidic mine drainage (AMD) emanating from coal mined lands involves the use of constructed wetlands.^The research was directed at addressing questions about retention mechanisms for the long-term storage of iron and manganese in constructed wetlands dominated by broad-leaved cattails (Typha latifolia).^Three sites in central Pennsylvania spanning the range of water chemistry parameters found in AMD were investigated.^When the AMD was circumneutral, and metal loadings were low, 79% of the iron, and 48% of the manganese were retained on average.^In the highly acidic site (pH approx.^= 3), < 10% of the metal loadings were retained.^The primary retention mechanism appears to be the formation of metal oxides in the aerobic zones of the sediments.^Although most microbial isolates extracted from sediment cores originated in the aerobic portions of the sediments, there was no evidence that they were transforming metals.^When AMD is circumneutral and metal loadings are low, constructed wetlands can be an effective approach to treating mine drainage.^At sites with highly acidic waters and high metal loadings, the use of constructed wetlands to treat AMD may be ineffectual, and should be implemented with caution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Long-term removal and retention of iron and manganese from acidic mine drainage by wetlands; Springfield, Va. : NTIS; Opac Approved no
Call Number CBU @ c.wolke @ 7082 Serial 435
Permanent link to this record
 

 
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication Process Metallurgy, vol.9, Part B Abbreviated Journal
Volume Issue Pages 559-567
Keywords acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Amils, R.; Ballester, A.
Language (up) Summary Language Original Title
Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0444501932 Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16595 Serial 442
Permanent link to this record