toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gerth, A.; Kießig, G. isbn  openurl
  Title Type Book Whole
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages 173-180  
  Keywords (down) mining uranium mining passive treatment Saxony mine water treatment  
  Abstract Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_  
  Address  
  Corporate Author Thesis  
  Publisher Battelle Press Place of Publication (6)5 Editor Leeson, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Phytoremediation, wetlands and sediments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-57477-115-9 Medium  
  Area Expedition Conference  
  Notes Passive/Biological Treatment of Waters contaminated by Uranium Mining; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 4 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17345 Serial 372  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Mine water tracer tests as a basis for remediation strategies Type Journal Article
  Year 2005 Publication Chemie der Erde Abbreviated Journal  
  Volume 65 Issue Suppl. 1 Pages 65-74  
  Keywords (down) Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.  
  Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2819 ISBN Medium  
  Area Expedition Conference  
  Notes Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17499 Serial 34  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. url  openurl
  Title Passive treatment of ferruginous mine waters using high surface area media Type Journal Article
  Year 2001 Publication Water Res. Abbreviated Journal  
  Volume 35 Issue 15 Pages 3643-3648  
  Keywords (down) mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment  
  Abstract Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9698 Serial 27  
Permanent link to this record
 

 
Author Tsukamoto, T.K.; Miller, G.C. url  openurl
  Title Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage Type Journal Article
  Year 1999 Publication Water Res. Abbreviated Journal  
  Volume 33 Issue 6 Pages 1365-1370  
  Keywords (down) mine water treatment mining activity sulfate-reducing bacteria microbial activity acid mine drainage methanol passive treatment systems sulfate-reducing bacterium sp-nov  
  Abstract Sulfate reducing passive bioreactors are increasingly being used to remove metals and raise the pH of acidic waste streams from abandoned mines. These systems commonly use a variety of organic substrates (i.e. manure, wood chips) for sulfate reduction. The effectiveness of these systems decreases as easily accessible reducing equivalents are consumed in the substrate through microbial activity. Using column studies at room temperature (23-26 degrees C), we investigated the addition of lactate and methanol to a depleted manure substrate as a method to reactivate a bioreactor that had lost >95% of sulfate reduction activity. A preliminary experiment compared sulfate removal in gravity fed, flow through bioreactors in which similar masses of each substrate were added to the influent solution. Addition of 148 mg/l lactate resulted in a 69% reduction in sulfate concentration from 300 to 92 mg/l, while addition of 144 mg/l methanol resulted in an 88% reduction in sulfate concentration from 300 to 36 mg/l. Because methanol was found to be an effective sulfate reducing substrate, it was chosen for further experiments due to its inherent physical properties (cost, low freezing point and low viscosity liquid) that make it a superior substrate for remote, high elevation sites where freezing temperatures would hamper the use of aqueous solutions. In these column studies, water containing sulfate and ferrous iron was gravity-fed through the bioreactor columns, along with predetermined methanol concentrations containing reducing equivalents to remove 54% of the sulfate. Following an acclimation period for the columns, sulfate concentrations were reduced from of 900 mg/l in the influent to 454 mg/l in the effluent, that reflects a 93% efficiency of electrons from the donor to the terminal electron acceptor. Iron concentrations were reduced from 100 to 2 mg/l and the pH increased nearly 2 units. (C) 1999 Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Apr; Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage; Isi:000079485400004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10197.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10197 Serial 50  
Permanent link to this record
 

 
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B. url  openurl
  Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
  Year 1997 Publication Environ. Geol. Abbreviated Journal  
  Volume 32 Issue 3 Pages 157-174  
  Keywords (down) mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage  
  Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.  
  Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10620 Serial 18  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: