|   | 
Details
   web
Records
Author Akcil, A.; Koldas, S.
Title Acid Mine Drainage (AMD): causes, treatment and case studies Type Journal Article
Year 2006 Publication J. Cleaner Prod. Abbreviated Journal
Volume 14 Issue 12-13 Pages 1139-1145
Keywords (up) contamination effluents government industrial pollution industrial waste mining industry research initiatives wastewater treatment acid mine drainage environmental problems mining industry government research initiatives contamination civil engineering mining quarrying activity environmental impact acid generating process acid drainage migration prevention measures effluent treatment chemical treatment biological treatment Manufacturing and Production Entwässern=Gelände Umweltbelastung Bauingenieurwesen Bergbau Sickerwasser Steinbruch Säureproduktion Neutralisation Bergbauindustrie technische Forschung Ingenieurswissenschaft Steinbruchabbau Acid Mine Drainage Mining Environmental Chemical and biological treatment
Abstract This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage (AMD): causes, treatment and case studies; Science Direct Approved no
Call Number CBU @ c.wolke @ 17462 Serial 36
Permanent link to this record
 

 
Author Smit, J.P.
Title Type Book Whole
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 467-471
Keywords (up) experimental studies; ground water; laboratory studies; methods; mine drainage; pollutants; pollution; remediation hydrogeology mining water treatment contamination sulphate economy ettringite acid mine drainage plants agriculture laboratory hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Treatment of polluted Mine Water; 1; AMD ISI | Wolkersdorfer; FG 'de' 5 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 9909 Serial 241
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J.
Title Mine drainage treatment and ferrite sludge application Type Journal Article
Year 1991 Publication NEC Technical Journal Abbreviated Journal
Volume 44 Issue 5 Pages 4-16
Keywords (up) ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production
Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0285-4139 ISBN Medium
Area Expedition Conference
Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16787 Serial 279
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords (up) Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Kuyucak, N.
Title Type Book Whole
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 599-606
Keywords (up) hydrogeology mining water acid mine drainage environment treatment control economy oxidation sulphide hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage Prevention and Control Options; 1; AMD ISI | Wolkersdorfer; FG 'de' 6 Abb., 1 Tab. Approved no
Call Number CBU @ c.wolke @ 17373 Serial 325
Permanent link to this record