toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sheoran, A.S.; Sheoran, V. url  openurl
  Title Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review Type Journal Article
  Year 2006 Publication Minerals Engineering Abbreviated Journal  
  Volume 19 Issue 2 Pages 105-116  
  Keywords (down) Acid mine drainage Metal removal mechanism Wetlands  
  Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. Water infiltrating through the metal sulphide minerals, effluents of mineral processing plants and seepage from tailing dams becomes acidic and this acidic nature of the solution allows the metals to be transported in their most soluble form. The conventional treatment technologies used in the treatment of acid mine drainage are expensive both in terms of operating and capital costs. One of the methods of achieving compliance using passive treatment systems at low cost, producing treated water pollution free, and fostering a community responsibility for acid mine water treatment involves the use of wetland treatment system. These wetlands absorb and bind heavy metals and make them slowly concentrated in the sedimentary deposits to become part of the geological cycle. In this paper a critical review of the heavy metal removal mechanism involving various physical, chemical and biological processes, which govern wetland performance, have been made. This information is important for the siting and use of wetlands for remediation of heavy metals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17252 Serial 41  
Permanent link to this record
 

 
Author Agency, U.S.E.P. openurl 
  Title Type Book Whole
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Acid mine drainage California Alpine County Bioreactors California Alpine County Bioremediation California Alpine County Hazardous waste site remediation California Alpine County  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Research Laboratory, Office of Research and Development, United States Environmental Protection Agency Place of Publication Cincinnati, OH. Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Compost-free bioreactor treatment of acid rock drainage Leviathan Mine, California : innovative technology evaluation report Abbreviated Series Title  
  Series Volume 2 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Compost-free bioreactor treatment of acid rock drainage Leviathan Mine, California : innovative technology evaluation report; Cincinnati, OH. : National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency; Opac Approved no  
  Call Number CBU @ c.wolke @ 7248 Serial 490  
Permanent link to this record
 

 
Author Ciftci, H.; Akcil, A. openurl 
  Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
  Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal  
  Volume 45 Issue 1 Pages 35-45  
  Keywords (down) acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology  
  Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-9416 ISBN Medium  
  Area Expedition Conference  
  Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no  
  Call Number CBU @ c.wolke @ 16444 Serial 416  
Permanent link to this record
 

 
Author Canty, G.A.; Everett, J.W. openurl 
  Title Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue 1 Pages 45-55  
  Keywords (down) acid mine drainage AMD alkaline injection technology fluidized bed combustion ash Oklahoma  
  Abstract A demonstration project was conducted to investigate treating acid mine water by alkaline injection technology (AIT). A total of 379 t of alkaline coal combustion byproduct was injected into in an eastern Oklahoma drift coal mine. AIT increased the pH and alkalinity, and reduced acidity and metal loading. Although large improvements in water quality were only observed for 15 months before the effluent water chemistry appeared to approach pre-injection conditions, a review of the data four years after injection identified statistically significant changes in the mine discharge compared to pre-injection conditions. Decreases in acidity (23%), iron (18%), and aluminium (47%) were observed, while an increase in pH (0.35 units) was noted. Presumably, the mine environment reached quasi-equilibrium with the alkalinity introduced to the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage; 1; FG 6 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17319 Serial 422  
Permanent link to this record
 

 
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R. openurl 
  Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue 4 Pages 241-245  
  Keywords (down) acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia  
  Abstract In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17420 Serial 248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: