|   | 
Details
   web
Records
Author Johnson, D.B.; Hallberg, K.B.
Title Pitfalls of passive mine water treatment Type Journal Article
Year 2002 Publication Reviews in Environmental Science & Biotechnology Abbreviated Journal
Volume 1 Issue 5 Pages 335-343
Keywords (up) acid mine drainage acidophilic microorganisms heavy metals iron oxidation iron reduction remediation sulfate reduction wetlands Wheal Jane
Abstract Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-1705 ISBN Medium
Area Expedition Conference
Notes Dec.; Pitfalls of passive mine water treatment; 2; FG als Datei vorhanden 4 Abb., 1 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 10138 Serial 336
Permanent link to this record
 

 
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication Process Metallurgy, vol.9, Part B Abbreviated Journal
Volume Issue Pages 559-567
Keywords (up) acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Amils, R.; Ballester, A.
Language Summary Language Original Title
Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0444501932 Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16595 Serial 442
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal
Volume Issue Pages 1545
Keywords (up) acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology
Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.
Address
Corporate Author Thesis
Publisher AAPG Bulletin Place of Publication 81 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no
Call Number CBU @ c.wolke @ 16630 Serial 70
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Journal Article
Year 1998 Publication Environ Geosci Abbreviated Journal
Volume 5 Issue 2 Pages 43-56
Keywords (up) acid mine drainage aerobic environment anaerobic environment attenuation chemical fractionation chemical properties concentration constructed wetlands controls degradation detection environmental analysis ferric iron goethite heavy metals iron jarosite Kentucky McCreary County Kentucky metals oxides pollutants pollution seepage soils solubility sulfates surface water United States water treatment wetlands X-ray diffraction data 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1075-9565 ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; 2001-034195; References: 41; illus. incl. 1 table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16623 Serial 61
Permanent link to this record
 

 
Author Berthelot, D.; Haggis, M.
Title Application of remote monitoring and data management systems to environmental management of tailings facilities Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords (up) acid mine drainage Algoma District Ontario applications Canada cost data management data processing Eastern Canada efficiency effluents Elliot Lake Ontario environmental analysis environmental management information management land management mining monitoring Ontario planning pollution remediation solid waste Stanleigh Mine tailings technology waste disposal 22, Environmental geology
Abstract The mining industry has made tremendous strides in the last 20 years in the prevention and control of acid mine drainage. However, there remain a number of circumstances where the long-term operation, care and maintenance of tailings management facilities will be required. The application of progressive environmental technologies and management systems is key to cost control and environmental liability management at these sites. Mine Waste Management Inc. currently operates Rio Algom Limited's five effluent treatment plants and seven waste management areas in the Elliot Lake, Ontario region using a Remote Plant Monitoring and Control Network (RPMCN). This system, based on Intellutions's “Fix 32” technology, enables the monitoring and control of these plants from a centralized location thus reducing labour costs while providing 24-hour surveillance. Scheduling, auditing and reporting of plant operating and environmental monitoring programs are integrated and controlled using the Envista (super TM) environmental information management system. Proper application of these technologies and management systems facilitates delivery of cost-effective environmental monitoring, and care and maintenance programs at these sites and provides tools to demonstrate compliance with all environmental performance criteria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Application of remote monitoring and data management systems to environmental management of tailings facilities; GeoRef; English; 2002-060870; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 2; illus. incl. sketch map Approved no
Call Number CBU @ c.wolke @ 16575 Serial 449
Permanent link to this record