|   | 
Details
   web
Records
Author Kuyucak, N.
Title Acid mine drainage prevention and control options Type Journal Article
Year 2002 Publication CIM Bull. Abbreviated Journal
Volume 95 Issue 1060 Pages 96-102
Keywords (up) acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management
Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.
Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17532 Serial 64
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M.
Title The roles of spent mushroom substrate for the mitigation of coal mine drainage Type Journal Article
Year 1994 Publication Compost Science and Utilization Abbreviated Journal
Volume 2 Issue 4 Pages 84-94
Keywords (up) acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology
Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17639 Serial 233
Permanent link to this record
 

 
Author Burnett, M.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Injection of limestone into underground mines for AMD control Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords (up) acid mine drainage; acidification; alkalinity; carbonate rocks; chemical composition; coal fields; concentration; environmental analysis; environmental management; experimental studies; geologic hazards; ground water; hazardous waste; heavy metals; hydrology; land subsidence; limestone; mines; mining; mining geology; pH; pollution; Preston County West Virginia; reclamation; runoff; sedimentary rocks; Sovern Run Mine; surface water; underground mining; United States; waste management; water quality; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Injection of limestone into underground mines for AMD control; GeoRef; English; 2004-051160; Edition: 2 References: 2; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 6370 Serial 427
Permanent link to this record
 

 
Author Isaacson, A.E.; Jeffers, T.H.
Title Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering Type Book Chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) acid mine drainage; acidification; aquifer vulnerability; aquifers; chemical reactions; discharge; dissolved materials; ground water; infiltration; ion exchange; leachate; metal ores; mining; mining geology; models; open-pit mining; pollutants; pollution; preventive measures; reclamation; remediation; soils; sulfides; surface mining; surface water; techniques; toxicity; uranium ores; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Engineering Foundation Place of Publication New York Editor Richardson, P.E.; Scheiner, B.J.; Lanzetta, F., Jr.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0939204533 Medium
Area Expedition Conference
Notes Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering; GeoRef; English; 2000-063662; Engineering Foundation conference on Technical solution for pollution prevention in the mining and mineral processing industries, Palm Coast, FL, United States, Jan. 22-27, 1995 illus. Approved no
Call Number CBU @ c.wolke @ 6450 Serial 344
Permanent link to this record
 

 
Author Dempsey, B.A.; Jeon, B.-H.
Title Characteristics of sludge produced from passive treatment of mine drainage Type Journal Article
Year 2001 Publication Geochem.-Explor. Environ. Anal. Abbreviated Journal
Volume 1 Issue 1 Pages 89-94
Keywords (up) acid mine drainage; aerobic environment; anaerobic environment; Appalachian Plateau; Appalachians; carbonate rocks; coagulation; compressibility; decontamination; density; drainage; filtration; geochemistry; Howe Bridge; Jefferson County Pennsylvania; limestone; mining geology; North America; passive systems; Pennsylvania; pH; pollution; ponds; rates; reclamation; sedimentary rocks; settling; sludge; slurries; suspended materials; United States; viscosity; wet packing density; wetlands; zeta-potential 22, Environmental geology
Abstract In the 1994 paper by Brown, Skousen & Renton it was argued that settleability and wet-packing density were the most important physical characteristics of sludge from treatment of mine drainage. These characteristics plus zeta-potential, intrinsic viscosity, specific resistance to filtration, and coefficient of compressibility were determined for several sludge samples from passive treatment sites and for several sludge samples that were prepared in the laboratory. Sludge from passive systems had high packing density, low intrinsic viscosity, low specific resistance to filtration and low coefficient of compressibility compared to sludge that was produced after addition of NaOH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Feb.; Characteristics of sludge produced from passive treatment of mine drainage; 2002-008382; References: 29; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5734 Serial 57
Permanent link to this record